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Abstract—A novel method of measuring the relative complex

permittivity (s = c’ – jc” ) and relative complex permeability

(~ = U’ – j ~“) of a material at I{. Band (26.5-40 GHz) using

a partially filled waveguide (PFW) (rectangular) and a vector
network analyzer (VNA) is presente~. The method is based on 1)

placing a material sample of length L, width ti (waveguide width),

and height ~ < b (b is the waveguide height) in a rectangular
waveguide, 2) measuring the S-parameters of the sample using

the VNA, and 3) inferring the c’, ~“, ~’, and p“ parameters by
comparing the experimental S-parameters with numerically gen-

erated S-parameters. The paper presents a method of moments

analysis and a~so a variational formulation of the scattering that
occurs from a finite length sample that partially fills a waveguide.

Formulas to calculate the complex Poynting power and energy
in the waveguide are derived to check the degree to which the
numerical solutions obey the conservation of complex power.

Numerical methods to extract the material parameters from
the S-parameter data are proposed. The experimental PFW S-

parameters of a radar absorbing material are measured and its

dielectric material parameters are inferred.

I. INTRODUCTION

A

N IMPORTANT problem in microwave and millimeter

wave theory [1 ]–[24] concerns the determination of the

values of the complex relative dielectric permittivity, s =

S’ – ~c”, and complex relative magnetic permeability, P =

~~’ – ~~”, of a material in K. (26.540 GHz) and W bands

(75-1 10 GHz). This problem has important applications for

biological tissue analysis, radar imaging of terrain (desert and

forest) and design of radar absorbing materials (RAM). At the

present time, there are several techniques for measuring e and

p. These are 1) placing a material sample in a millimeter wave

cavity and measuring the perturbed quality factor of the cavity

and from this determining the e and p of the sample [1]; 2)

placing a uniform layer of given thickness of sample in free

space, illuminating the sample with a normally incident plane
wave imd from its transmission and reflection coefficients (Or

S (scattering) parameters (SII, S12)) [2]–[8], determining the

sample’s E and ,LL;3) placing a sample of material of length ~

in a waveguide (the material fills completely the waveguide’s

transverse cross-section) illuminating the material with a TEIO
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mode, and from the reflection and transmission coefficients

(Sll, Sz,) inferring the s and u of the sample [9]-[12]; 4)

placing the sample near an open-ended TEM probe and from

the measurements inferring the material properties [13]; 5) use

of an open-ended Fabry-Perot resonator [14]; and 6) use of a

Fourier transform spectroscopy [14]. Ref. [14] gives a survey

of current near millimeter wave measurement technology as

applied to determination of the absorption coefficient and

index of refraction of a material.

Because of the high frequencies and small wavelengths of

K. (A G 8 mm) and W(A % 3 mm) bands, all the methods

mentioned above have some limitations for measuring the

permittivity and permeability of a given sample. The quality

factor method requires a cavity roughly 10 mm on a side,

and a sample of 1 or 2 mm in cross-section. Also extremely

precise dimensions of the cavity feed probe are required, along

with knowledge of the probe’s effect on the quality factor

measurement. The free space layer measurement is limited at

K. and W’ bands because the layer requires accurate alignment

of the normally incident wave, and requires an accurate

uniform thickness of the layer over a large transverse area for

the magnitude and phase (S11 and Szl ) of the reflection and

transmission coefficients to be measured accurately. Unless

the sample’s dielectric parameters are spatially very uniform,

the measurement also only gives an average value of e and

# in the sample. If the sample consists of large pertnittivity

and permeability values, very thin sample layers are required

over a fairly large areas (10 cm x 10 cm). The S-parameter

waveguide method is also limited at K. and W bands because

it is difficult to place a thin sample in the cross-section of

the waveguide and have it be exactly perpendicular with its

flat surface exactly normal to the longitudinal waveguide axis.

Very slight misalignment of the sample, particularly if the

sample is of high dielectric value, can cause large error in
the magnitude and phase of the reflection coefficients, thus

causing nonrepeatability in the data collection process. If the

sample is of high dielectric value, a very small change in

the sample’s length can cause a large change in the sample’s

reflection and transmission coefficients.

The purpose of this paper is to propose a novel method

of measuring the complex pertnittivity and permeability of a

material sample using partially filled waveguide (PFW) theory

[1], [15]-[16] and method of moments (MOM) theory. The

novel method consists of partially filling a rectangular wave-

guide with a material sample of length ~, width ii, and height
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~, (~ < ~, ~ = waveguide height), illuminating the sample

with a TEIO mode and from these experimentally measured

reflection and transmission coefficients (S1l, S21 parameters)

inferring the e and K of the sample. The s’, c“, p’, and ~“

of the sample are inferred by using a PFW, MOM analysis

to calculate the S1l and S21 parameters of a material sample

of a given (e’, e“, v’, and y“) and then least-squares curve

fitting these S-parameters to the measured S-parameter data.

The proposed PFW method represents a generalization of the

filled waveguide (FW) method presented by [9]–[12], which

depends on a TEIO analysis for the parameter determination.

The authors feel that this is a useful way to measure s and

~ at K. and W bands for several reasons. First, as the height,

d, of the sample is reduced, it requires a larger sample length,

L, to observe significant reflection (S1l) and transmission

coefficients (S21 ), as compared with the FW method. Thus

at K. and W bands, the height, ~, can be reduced until a

comfortable working length, ~, of the sample (10 mm to 25

mm) can be obtained. This is much easier to work with than

short length samples. Second, the proposed waveguide method

allows measurement of the S-parameters over a wide range of

height values, thus supplying a large amount of measurement

data from whic~ to determine E and ~. Each different partially

filled height, d, exposes the sample to EM radiation in a

different and unique way to every other waveguide height.

The accumulation of data in this way adds to the certainty

of the final answer. Third, placing the sample in a waveguide

which is partially filled, the lower waveguide wall is a natural

mechanical support for the sample.

The numerical solution presented here is closely related

to Strttbe and Arndt’s [17] analysis of a shielded dielectric

image guide. Ref. [17] analyzed the reflection that occurred

when a TEIO mode was incident on a semi-infinite section of

dielectric image line. The work presented here is a limiting

case of when the image line of [17] fully fills the waveguide

transversely. However, in [17] the length of the image line is

semi-infinite, whereas in the present analysis a finite length

is analyzed. The authors feel that the solution presented here

represents an interesting limiting test case for the image line

transition presented in [17]. In other words, the solution of [17]

should approach the solution presented here when the width of

dielec~ric image line approaches the width of the waveguide

(and L + cm).

II. METHOD OF MOMENTS SOLUTION

The determination of the electromagnetic fields that result

when a TElo waveguide mode (the only propagating mode)

is incident on a slab of material whose relative dielectric

permittivity is E = e’ – jE”, whose relative permeability is

p = p’ – jp”, whose width is ii (transverse waveguide width),

whose length is L, and whose height d (Fig. 1 inset) is a three-

step procedure that consists of Step 1: determining the forward

and backward propagating modes that exist in Regions (a), (b),

and (c) of Fig. 1 [Region (b) is composed of Regions (bl) and

(b2)]; Step 2: expanding the unknown fields in Regions (a), (b),

and (c) in terms of the modes of Step 1 (unknown complex

amplitude coefficients are assumed to multiply the modes);
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Fig. 1. The values of the first three PFW propagation constants and the val-
ues of the first three FW propagation constants are shown. The interconnecting
line between the PFW and TE propagation constants shows the intermediate
steps used in the search for the PFW propagation constants.

and Step 3: matching electromagnetic boundruy conditions

at the aperture planes (sample incident side) and ~ = ,–~

(sample transmit side) to define a matrix equation from which

the unknown amplitude coefficients of Step 2 may be solved.

After a lengthy TM. vector potential analysis of Maxwell’s

equations in the empty waveguide region of Fig. 1 inset [Re-

gions (a) and (c)], [1], and the partially filled waveguide region

of Fig. 1 inset [Region (b)], [1], [15]–[ 16], the electromagnetic

fields of Steps 1 and 2 for Region (a) are

n=o

wherekc = ~, m= 1 k.n = ~, n=o, 1,2, . . .
a

n=o, 1,2, . . .
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{

2Tf
‘qO= : =377n, ko=; =—

c’

c = 3 x 108 mJsec

j = frequency (Hz)

Tna(V) = ~la%oevany + ~~.e–v”ny,

Lnu(y) = E~a6n,oeT*~y – E&e-~””Y,
Xzkjj y = ko~, 2 = koz

a = k~ti~ b = kO~, d = k.~, L = k.~,

{

‘-=ln=o

n,o
O n#O.

(1)

E&, n = O is the amplitude of the incident TEIO mode, E~a

are the unknown reflection coefficients which result from the

sample located at y = O, p. is the relative permeability of

Region (a) (~. = 1 in this paper), Ea is the relative permittivity

of Region (a) (EG = 1 in this paper). x, y, and z are normalized

coordinates, and a, b, d, and L are normalized dimensions.

All insets are given in terms of normalized coordinates and

dimensions.

The solution for Region (c) is given by replacing in (l), a

by c and taking Tnc (y) and LmC(y) to be

T~~(Y) = E~Ce7cnfy+~J, LnC(y) = E~Ce~=~(~+~). (2)

E~C are the unknown transmission coefficients which propa-

gate away from y = –L (sample end) in Region (c).

The fields in Region (b) are given by

@= ~T~~(y)e~~(z)cosk~x
n=(l
cc

Eb = ~ L~b (y).g~Y (2) sin kzx

n=l)

E:= ~T~~(g).z~(z)sin&x
n4J

cc

Hb = ~ ~ Lnb(g)hzm(z) sin k.xz
J%. ~=o

03

Hb = J ~ Tnb(y)hvn(z) COS &X
Y

.iVo ~=o

where

Tnb(y) = E~be7’ny + E;be–~’mY

Lnb(y) = E~be~bnY – E~be–~b”Y

where

{

Arln sinh T.I~z,
.Zn(z) =

O<z<d

AZ2nsinh~Z2n(z – b), d< z < b ‘

{

Aglnsinhyzlnz, O<z<d

‘Yin(Z) = Av2n Sinh ~z,n(~ – b), d ~ z < b
—

AzIn Cdvzlnz, 0<.zSd
‘~~(z) = {AZ,n cosh~.,n(z - b), -d<.z <b’

{

Hzlm cosh ~zln~, O<z<d
h.m(.z) = HZ.n coshy.zn(~ – b), d<z<b

{

Hvln cosh?zln~, O<z<d
~YTI(ZJ = Hy2n cosh yz2m(~ – b), d<z<b

()Axln = :
‘z7z1ncnAz2n1 ‘z’n= (2%)Az2n

Ayln = ~~bn~z@nAz2n, AY2n =
(::%)A2n

Azln = :(k: – 7&) CnAZ2., AZ2. = 1.

1 cosh 7Z2n (d – b)
c’ = ~: _ ~:n cosh ~Z1nd “

(3)

E$b is the unknown amplitude of the PFW mode traveling

to the right and E;b is the unknown amplitude of the PFW

mode traveling to the left in Region (b). Tb~ is the longitudinal

propagation constant of the nth PFW mode and satisfies the

well known PFW eigenvalue equations

%ln
— tanhyzl.d = ~ tanhy22.(d – b) (4a)
&bl

O = ‘fm+’k +flbi&bz, ~ = 1,2. (4b)

Ubi is the relative complex permeability in Regions (bl) and
(b2), respectively, and &b, is the permittivity in the Regions

(bl) and (b2). In this paper pbz = 1, Eb2 = 1. Also &b~ =

E = E’ – j&” and ~bl = p = M’ – j~” are the unknown

relative permeability and permittivity of the sample which is

to be determined.

Three different waveguide modal methods have been tested

to numericrdly enforce EM boundary conditions at the inter-

faces y = O and y = –L. In the first method, only the Ez

and Hz field components were matched at the interfaces; in

the second method, the transverse electric and magnetic fields

were dotted with themselves and this dot product was matched

at the interface (Galerkin method); and in the third method,

the Ez, E., and llc field components were all individually

matched at the interfaces. In all three methods, enforcement

of the boundary condition is imposed by multiplying the field

or field components by waveguide modes and integrating the

resulting expression over the waveguide cross-section.

The EM boundary conditions in the first and second methods

are given by the equations

J
_*.s.

e tn
c.,.

-(7,.C
E

/

_Ta, c -b

dS = e tn E dS
y=()+, -L– c s. yGo–,–L+

J

_rf. >.

h tn
C.s.

-a)c

/

-Ta,c _b

H dS = h tn H dS
Y=o+, –L– C.s. y=o–, –~+

(5)

where

-T”

e tn = pna cos kZx sin kZnz? + sin kZx cos kZnz2
-.

-1-

h tn = sin lc. x cos kzn.z? (6)
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ATa -Ta

and where e ~n and h ~n are given by (6) with a replaced

by c. The boundary matching equations of the first method

are given by p.. = p.. = O, and the boundary matching

equations of the second method are given by pna = qna and
_Ta>. _p,c

Pnc = qnc. Because e ~n and h ~n (T = test) involve

waveguide sinusoidal modal fields in Region (a), they satisfy

the orthogonality relations

/

-r, ” -E”’

h tn’ . h,n dS = N~’c6n,m, n, n’ = (O, 1,2,.. .)
C.s.

(7)
-Ea
e ~n = qna cos /tzx sin kznzx + sin lcxx COS lCZn Zi

_-Es

htn = sin k=x cos k%mzk (8)

c -Ec

and where ~~ and h ~n are given by (8) with a replaced by

c. The matrix equations for the first and second methods for

where

21hznt ,n

IHan!,n =
bsn{a[l + &,n/]

where

.~~,~ = A~IJ1.~(n’, n) + &J2..(n’, n)I

I eznf ,n = A.ln~l..(~’, ~) + A.dz.z(n’,n)

Ihzn,,n = ~Zln]l.Z(n’, n) + ~z2n~2.Z(n’, ‘a)

/

d

11.Z(73’, n) = sin kZnI z sinh TZlmz dz
0

J
b

12.Z(7L’, n) = sin lcZnl z sinh -yZ2n (z – b) dz
d

I

d

Ilez(n’, n) = COS /fznI Z cosh ~zl~z dz
o

/

b

12ez(n’, n) = COS kz~lz cosh~Z2n(z – b) dz.
d

(9a)

(9b)

(lo)

(11)

The IEcni ,n and IHCnl ,n terms are found replacing a by c in

(10). Once -E~b and E;, are determined, (l)-(3) maybe used
to find E~a and E:,.

The third method of matching boundary conditions is the

method used by [17] to match EM fields for the dielectric

image line-rectangular waveguide transition interface. There

is a significant difference in the boundary matching of the

present problem and that of the dielectric image line. In the

problem of [17], it was possible to 1) choose the number of

waveguide modes used for expansion (longitudinal TE and TM

rectangular waveguide modes) and the number of dielectric

image line hybrid modes used for expansion equal to one

another; and 2) enforce (that is multiply each EM field com-

ponent by the proper waveguide modal function and integrate

across the waveguide cross section) the tangential boundary

conditions of each EM field component using the rectangular

waveguide modes as test functions. In the present problem, it

was not possible to do this because the waveguide expansion

functions consisted of NW TM, rectangular waveguide modes

(mode number n = O, NW – 1) in Region (a) and NW TM.

rectangular waveguide modes in Region (c). At each interface

there were NW – L?3z rectangular waveguide modal coefficient

equations, NJ?, rectangular waveguide modal coefficient

equations and NW Hz rectangular waveguide modal coefficient

equations that had to be enforced. With two interfaces, this

led to 2(3NW – 1) rectangular waveguide modal coefficient

equations that had to be satisfied. For a square matrix equation

which was analyzed in this paper, it was necessary to choose

2(3NW – 1) – 2NW = 4NW – 2 forward and backward PFW

waveguide modes as expansion functions. This choice made

the number of PFW expansion functions 4NW – 2 unequal to

the number rectangular waveguide expansion functions 2NW.

All three boundary matching methods were tested numeri-

cally (for ua = VC = 1, ea = SC= 1) on a number of different

parameter cases (different L, e, p, d). It was found that the

third method gave extremely poor, unusable numerical results

when the matrix equation was solved. It was also found that

the p~a = pmc = O set of values gave far more accurate

complex power conservation results and far more accurate

matching of the aperture fields than did the Galerkin values of

pn. = qn., pn. = qmc. For this reason, the first method, that is

the pna = pnc = O values, have been used in all calculations

in this paper. Because of the extremely poor numerical results

as found by the third method and because this is the boundary

matching method used by [17], the authors believe that the

present problem cannot be treated as simply a limiting case of

the rigorous dielectric image line analysis as presented in [17].

Using the first method of boundary matching, pna = pmc =

O, the S-parameters are calculated using (9) from the equation

ER
Sll = $,

ET
S21 = g (12)

0a 0a

provided E. = s= = 1, pa = p. = 1. Because the sample is

isotropic, we note that S22 = S11 and S12 = S21.

To cross-check the numerical MOM results of (9a) and (9b),

the authors have also derived a variational expression (Section

III) for the admittance of the sample Ys, (Ys = ~ where

R = E%). The admittance Ys is referenced at the y = O

plane, It turned out that the variational admittance expression

depended only on matching of the E, and Hz EM fields at
the y = O, –L interfaces for its derivation. Based on this

information, the authors believe that the pn~ = p~= = O

values (which correspond to only Ez and Hz matching at

y = O, –L) give better numerical results than the Galerkin

values Pn. = qma, pnc = qnc (which correspond to matching

of a linear combination of the fields Ex and EZ, and matching
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of the HZ field) because the pnu = qn~, pnc = qnc values

cause a larger error in the E. field than do the p.a = O,

p.C = O values because both the EE and E. are being forced

to equality when the pn. = qn., pn. = q~c values are used

rather than only the EZ field alone, as occurs when the pna =

O, pn. = O values are used. The larger error in the E. field,

as occurs in the Galerkin case, thus causes overall worse

numerical performance than the pna = pnC = O testing values.

There tie two important numerical cross-checks ‘tiat can

be made of the formulation as given in (1)–(1 1). The first

involves the calculation of the eigenfunctions ezm of hZn (3).

Collin [18] has shown that for a transversely inhomogeneous

and anisotropic waveguide, from the reciprocity theorem, that

if En and Hm are two PFW modes, then

/
2. x Zm .aZdS=O (13)

C.s.

when ~~ # Yn. Substituting different modes from (3), we find

that above equation reduces to

/

d

O = AzlnHzlm cosh T.I~z coshy.lmz dz
0

J

b

+ Az2.H.2m cosh TZ2m (z – b) cosh ~zzm (.z – b) d.z

d

Tbm # Tbn (14)

where all constants are given previously. Extensive numerical

testing of (14) has verified the above orthogonality equation

to a high degree of accuracy.

The second numerical cross-check involves the numerical

accuracy of the MOM solution as given in (9). The accuracy

of the numerical solution may be checked by comparing

the complex Poynting power that flows across the interfaces
y = O and y = –L as calculated by the Region (a), (b),

and (c) solutions. After algebra, it is found that complex

power Pc(Y) = PR(Y)+ jl’x(Y) = +Jc,s, i (Y) x i“
(Y) ~(-6VdS) at a plane

1) y > 0 in Region (a) is given by

cc

P~(y) = –;F ~ s;aTna(y)L&(y)(l + 6.,.) (15)
n=o

2) –L < y <0 in Region (b)

3) y < –L in Region (c)

m

Pc(y) = –;F ~ s;CTnC(y)L;C(y)(l + 6.,.) (17)
n=o

The accuracy of complex power matching from the numer-

ical solution at y = O and y = –L was measured by the

normalized power error equation

. . . = [lPC(O+)-PC(O-) [+lPc(-L+)-PC(-L-) l]/PINcP

(19)

where

PINC is the power of the TEIO incident mode.

III. VARIATIONAL SOLUTION

Instead of the MOM, an alternative method of determining

the S-parameters and EM fields of a finite length, partially

filled waveguide sample, is to form a TEIO aperture admittance

variational expression on the input side of the material (y = O),

and using this expression extremalize the resulting expression

to determine the reflection coefficients of the sample and from

this the EM fields of the system. We use a similar variational

analysis as presented by Galejs [19] to determine the aperture

TElo admittance of a rectangular waveguide feeding a ground

plane aperture.

To begin the analysis, we evaluate the EZ electric field at

y = 0+ [Region (a)]. We find

E,A(z) = Ej(z, z, o+)/ sinkZz
cc

—– aO(l + R) + ~a.coskZnz (21)

n=l

where R = E~a /Eja is the TEIO [Region (a)] reflection

coefficient, a. = * ~j 17Z~(z) d., am = : ~j EZ~(Z)

cosk=%zdz, n = 1,2,3, .,.. At y = O–. we find

E.A = E~(x, z, o-)/ sinkzx

= ~(E~b + E~b)e,~(Z). (22)

~=o

If this equation is multiplied by h.n (z) and integrated from O

to b, and the orthogonality property of ( 14) is used, it is found

/

lb
E:b+E;b=~ ~ hZn(z)EZ*(z) dz,

J
b

ivbn = eZm(,z)han(z) dz. (23)
o

After equating the HZ field at y = 0+ and y = 0-, we find

At this point, it is convenient to use matrix notation. Using

(23), we may express ~ – in terms of ~+ and after letting
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E+t = [ET, E& , “”.], ~:’O; [E;, E;,...1 we find from (9)—
and (10) (p~,~ = pn{C

E- = K-lK E+ = ~b~+— =2 =1—

.KI = [e-7bnL(~E.~/,~ – IHC~/ ~)],

& = [–e7b”L(IE.nf,n+ IHCW{,TZ)]. (25)

The – 1 superscript means matrix inverse and the t superscript

means transpose.

After expressing (23) in matrix form, we find

~+ = ~: &A(~’)[~ + Ebl ‘1 lV;lbn(z’) CM where

~-l = [(1/Ntm)~wm] ~ = [6n,n/], and ~~(z’)’ =

[hco(z’), hml (z’),.. .]. Substituting ao, an, E;b, and

E~6 from (21)-(25), respectively, (24) may be expressed in

terms of the EZA (.z). We have

1(1–R) b
——

!‘Oab(l+R) ~
.EZA(~) d~

/

b
—— EZA(,Z’)

o

{
x 9+ Cos kznz Cos I&z’ + @’)&m(z)

n=l }

(26)

where 4 = .~– 1 [1 + ~~] – 1’ [1 – I?5]t. If we multiply the

above ~quatlon by ‘EZA (z), inte~rate from O to b (following

[19]), and perform a small amount of algebra, we find

where G(.z, z’) = Gl(z, .z’) + ~[G2~(z, z’) + G2~(z1 ~’)],

Gl(z, z’) = ~;=l ~ COS&nZCOs &#, G2.(z, z’) =

$#:(~’)&(~), ~ = ~: E.Adz.

Galejs [19] shows that the above expression, because the

function G(,z, z’) is symmetric in z and z’, produces an

admittance Y~ = ~, which is stationary or insensitive to

small error in the aperture field E. A(z).

Equation (27) for Ys may be extremalized by expanding

co

EZA(Z) = E. + ~ E. cos kznZ

n=l

= [mE. 1 + ~ e. Coskz.z 1 (28)

n=l

where

e. = E./Eo.

Substituting this expression into (27) and then setting ~ = O

fern = 1,2,. ... the aperture admittance using the above

~=A(2) expression is given by

where <~ = ~, Kn, ,nt, = &-#n’@.n’ +ll:ngkl,OG

h:n = [./: hEO(z) COS &nz~Z, Jo &(z) COS &nZdZ, . . .]. Af-
ter differentiation, the final matrix equation to determine en

is given by

The reflection coefficient R is determined by R = ~,

and Y~ is determined from (27) using the en as results from

(30) substituted in it. When the sample extends to infinity

(L = Co), gb = o.

IV. MATERIAL PARAMETER (e’, &“, ~’, P“) ANALYSIS

The sample material parameters e = E’ – js” and v =

N’ – ~P” (Fig. 1 inset) maybe determined from laboratory S-
parameter measurement data (collected over a suitable range

of sample lengths, L, and sample heights d, using the MOM

solution of (9) (or variational solution) in two ways.

First, an S-parameter error function between the measured

complex S-parameter data (Sfi, S2~ ) and the numerically

calculated complex S-parameter data (S11, S21) is minimized

with respect to four independent variables (s’, &“, ~’, and p“)

to find the values of E’, E“, p’, and U“ which most closely

correspond to that of the measured sample. When the mag-

nitude and phase of the S-parameters can be measured accu-

rately, a useful error function to obtain the sample parameters

is given by the S-parameter error “--–-”’-lUIIGUUI1

Li, )
i=l ‘iJ=l

– Sn(di, Lil, e’, c“, u’, U“)12

+ lS2~(di, Lir)

– Szl(d,, L,, e’, e“, u’, p“)12}. (31)

When the S-parameter data (magnitude and phase) is noisy,

an alternative error function that can be used is one wlhich

is based on the normalized power that is absorbed (as bleat)

in the sample. The normalized power absorbed is the power

absorbed by the sample, divided by the incident power of the

TEIO mode. The power absorbed error function is given by

I I’

2=1 tl=l

– PAiv(dt, h, e’, e“, M’, LL’’)]2 (32)

where

PAN(d, L) = 1 – ISI112 – IS2112. (33)

In the present paper, S11 and S21 have been calculated for

a given (s’, d’, ,LL’, and u“) by (1)–(12), and Serr and ~~~
has been minimized by the IMSL package BCONF.

A second way that the parameters (s’, e“, p’, and p“) of

the sample can be determined involves the use of the complex

Poynting theorem. Assuming that the incident TEIO mode

arises from a source at g = cm, the complex Poynting thecmem

as applied to the volume, V(V = V61 + V.xt ) and the surface,
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S (S encloses V), (Fig. 9 inset) assumes the form

Pd= l’de+ l’dm
-bl -bl*

l’de = ;WCOE”

/

E E dV
VbI

/

-bl -bl*

Pdm = :W/40~” H . H dV
v~~

where Vbl is the volume over the sample, VeXt is a region

in V but exterior to Vbl, Pd., and Pdm represent the time-

averaged electric and magnetic power which is dissipated in

the sample (this is the only place in the system where energy

is dissipated), and WM and WE represent the time-averaged

magnetic and electric energies stored in the volume, V. In all

calculations in this paper, the ~~Xt and S~Xt of the VeXt region

is assumed to be 1. If Regions (a), (b2), and (c) were different

from free space, then the appropriate ~~Xt and &~Xtwould have

to be evaluated there, also Ps = O as there are no sources of

power in volume V.

The closed surface integral is integrated over the two end

faces (Fig. 9 inset) (located at y = l~g/2 and y = –L –

l’Ag/2) and over the waveguide walls. 1 and ~’ are large

positive integers and Jg is the normalized guide wavelength

of the TEIO propagating mode which exists in Regions (a) and

(c). The integers 1 and t’ are chosen to be large enough that the

evanescent fields of the interfaces at y = O and y = –L make

a negligible contribution to the end faces of S at ~ = ~ and

~.–L_~. Because the waveguide walls are perfect

conductors and the tangential electric field there is zero, no

contribution to the closed surface integral is made by the
waveguide walls.

Because the waveguide walls make no contribution to the

closed surface integral and because the evanescent fields in

Regions (a) and (c) don’t contribute to closed surface integral

over V, (because the end faces are far from the sample

interfaces), the value of the entire closed surface integral

only depends on the incident (E~a ), reflection (S1l Eja ), and

transmission (S21 E~a ) wave amplitudes of the propagating

TEIO modes of the system. Thus the entire surface integral is

a quantity that can be expressed in terms of the measurable

S-parameters, S1l and S21.

After evaluation of the known closed surface integral (real

and imaginary parts) in terms of the measured S-parameters

and evaluating the energy integrals of (34) in Regions (a) and

(c), then expressing these integrals in terms of integrals over

the evanescent electric fields evaluated at the interfaces, and

after extensive algebra, it is found that the real and imaginary

pals of (34) give

{
= F – [Vj21HZ – EL21Ez]

– I mag

{
;2 s:aT.a(O+)L;a(O+)

n=l }

{

jb m
–Imag –z~ S:CT;C(–L–)L;C( –L-)

Jl=l }

= PINCW’IV = PINC ( W:m + W;Par) (35b)

where p~2 = 1, E~2 = 1, S1l = lsllle~ell

+ 4/in A;tn/ Issi (n, n ‘) ILL(n, n’)}

n=o nf=cl

+ %?@;in/LrT(n, n’)}~cci(n, n’), i = 1,2

/

d

Iccl(n, n’) = cosh ~zlnz cosh V; In, z dz
o

/

b

1..2(72, n’) = cosh 7Z2~ (z – b) cosh 7:2m, (,z – b) dz.
d

1,., (n, n’), z = 1,2 is given by with sinh (hyperbolic sine)
replacing the cosh (hyperbolic cosine) in these terms. Also in

(35)

J
0

I~~(?z, ?2’)= ‘nb(!/)T;b(y) @,
–L

/

0

ILL(n, n’) = Lnb(Y)-%/b(y) dv
–L

The lEi and lHi (i = 1,2) integrals come from the volume

integrals JV Z . ~“ d~ and Sv ~ . ~’ d~ which occur in

(34). Imag{} means the imaginary part. The sums in (35b) are
summed over the evanescent modes in the aperture, This is

why the sum of these terms starts at n = 1. The term Wfipar

in (35b) refers to S-parameter term in the right hand side

(RHS) of (35b) and Wflm (num refers to numerical, N refers

to normalized by incident power) refers to the other terms in

the RHS of (35 b). If (35a–b) are divided by PinC (therefore
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normalized) and we let IEN = IE1 and IHN = IH1 /PINC,

(35a-b) become

P’IHN(d, L) + &“l~N(d, L) = ~AN(d, L) (36a)

~’IHN(d, L) – &’~~N(d, L) = WN(d, L)

= W:m(d, L) + W~ar(d, L).

(36b)

If (36a) is evaluated using two distinct values of the ordered

pair (d, L) (that is, evaluated at (all, LI) # (dz, ~2)), a z x 2

set of nonlinear equations is produced from which p“ and e“

can be inverted. If (36b) is evaluated at two distinct values

of (d, L), (36b) produces a 2 x 2 set of nonlinear equations

from which p’ and E’ can be inverted. The explicit way p“

and e“ occur in (36a) is suggestive of using an approximate

2 x 2 linear determination of ~“ and 6“ in (36a), with the

IHN, IEN, and PAN of (36a) approximated by values close

to the true values of p“ and E“ in (36a). The same applies

to the determination of ~’ and d in (36b). That is inverting

linearly (k = 1,2)

P:~HN(&~9~ Aw, d~) L~)

+ E~IEN (~~g, %9, d~,L~) = P/uv(%g,4ag, dk>Lk)

(37a)

and inverting linearly (k = 1,2)

d Lk)P;IHN(%> Pug>d~>L~) – ‘: IEN(ea9> %, ~>

= ~N(%g, hg, dk, h) = Wflm + VVjpar (37b)

where p.g and Eq are approximate guesses of the samPle

material parameters p, and e and Ng, cg are the inverted

values. The d, e“, p’, and p“ determination proceeds by

(1) placing in the PAN and W~par terms the measured S-

parameters S~ and Sfl from the experiment, (2) calcu-

lating IHN (~.g, #ag, d~, h), ~J5?N(%g, u~g,&,h) and

wvm(e~g, p~g, h, Lk) numerically, and (3) carrying out the
2 x 2 inversion.

These equations can be useful for helping to determine

&’, &“, ~’, and p“ in several ways: First, if (31) has been

minimized and a fairly good approximate value of c~g, egg,

Pig, and ~~g has been found, these equations can be inverted
for the parameters e:, c:, ILL, and P: to check the consistency
against the parameter values found from the S-parameter error

in minimization. Second, if many 2 x 2 inversions are made

for a wide range of values of L and d, any noise present in the

measured data S~ and S2~ may be averaged out. Third, the

equations may be useful to rule out false minimums which may

occur when minimizing (31). A negative or ridiculous value

of the permittivity or permeability values of the sample would

immediately rule out those values from the minimum found.

Fourth, (35a and b) are useful, as they could be combined
with the search algorithm to predict new values of e’, c“,

,u’, and p“ when minimizing (31).

V. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, we present some numerical and experimental

results of the theory presented in Sections II, III, and IV.

Fig. 1 shows a plot of the real and imaginary parts of the

first three PFW modes normalized propagation coefficients

as determined from (4) for values typical of a RAM sample

which was tested experimentally (Fig. 4). Fig. 1 inset shows

a side and front view of the rectangular waveguide geometry

containing the material sample. The PFW modes propagate in

Region (b). All coordinates and dimensions in the inset (and

in all insets in this paper) are dimensionless and given by

(l). The roots ~~~ were determined numerically by solving

(4) for ~~n using the IMSL package ZANLY and then taking

2 In order to insure that all modes werethe square root of y~n.

found, the TEl~, y~~ roots of a filled waveguide (Fw) were

first computed, and for a given mode this root was used as

an initialization point to find the PFW mode. In most cases,
tie TEln, ~~n initialization root was not close enough to the

associated PFW v~n value in order to find the associated PbW

root using the IMSL MATH/LIBRARY package ZANLY, The

authors overcame this initialization problem by placing in the

PFW VahteS for Eb2 and ~bz which were initially CIOSe to

those of the FW case (that is &bz = &bl and Pbz = Pbl),

then calculating the Tbn roots of this case and using these new

roots as new initialization points. By repeating this process

many times, each time moving &bz and pbz closer to that of

free space, it was possible to find a smooth root transition to

the final PFW root ~bn which was desired. The points marked

“+” in Fig. 1 show the TE1n, ~bn FW initialization points, and

the points marked with “*” show the final PFW root ~bn. The

starred line between the “+” and “*” show many intermediate

PFW roots for vahtes of &bz and ~bz which are intermediate

between the FW case (&bz R Ebl) and (~bz & pbl) and the

final PFW case when Region (bl) is free space (Eb2 = 1,

Pb2 = 1). As can be seen, a smooth transition ,occurs between

the FW and PFW cases, thus guaranteeing that all PFW modes

have been found. In the numerical case shown, 6 = 3.556

mm, thus because ~ = 2.8 rntn > ~, it was logical to st~ the

overalj initialization from an FW initialization point. When

~ < ~, the same procedure as just described can be used,

except that an unfilled waveguide can be used to initialize the

root finding procedure. Despite the many PFW roots found

(moving from the FW to final PFW modes), the procedure is

extremely quick numerically. The procedure also guarantees

that all PFW propagating modes are found. For the case shown,

14 modes in all were calculated (Fig. 1 shows only three of

these), These modes were found to satisfy the orthogotmlity

criteria (14) to a very high degree.

Fig, 2 shows the real and imaginary parts of the Ez and Hz

EM fields that result at the interfaces of the sample at y = O

andy=– Lfrom O<z Sbat z=~when14 modesme

used to solve (9). In Fig. 2(a) and (b), the dotted line refers to

fields evaluated at y = 0+ (Region (a) just outside the sample),

and the solid line refers to fields evahtated at y = 0– (Region

(b) just inside the sample). In Fig. 2(c) and (d), the dotted line
refers to fields evaluated at v = –L– (just outside the sample),

and the solid line refers to fields evaluated at y = –L+, As

can be seen from Fig. 2(a)–(d), there is excellent agreement

of the EZ and H% fields at the interface. The discontinuity in

the E, field at z = d, y = 0- and y = –L+ (see Figs. 1 and

2 insets) (inside the sample) occurs because of the material
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(a)

y=o

(b)

Fig. 2. Plots of the E,. and H,

~.L
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(d)

interface EM fields at v = O and
Y = –L is shown as calculated along the line x = a/2: In these figures,
: = 4.957 – J.27~, ,u = 1.236, ii = 7.112 mm, b = 3.556 mm.
d = .722 mm, and L = 5 mm.

discontinuity at z = d and the fact that the EZ field is normal

to the discontinuity at this point. The EZ field at y = 0+ and

y = – L– (outside the sample) is continuous as z = d as it

should, since there is no material discontinuity at this point.

Its interesting how the modal cosine series of the EZ field in

Regions (a) and (c) at z = d and y = 0+ and g = –L-

fjust outside the sample), respectively, buildup to satisfy the

discontinuous boundary conditions at z = dand y= O- and

y = –L+ (just inside the sample region). The HZ field at y =

O and y = –L is continuous at .z z d both inside and outside

the sample; thus, its boundary condition is met extremely well.

The solid and dotted lines can barely be distinguished from

one another.

In this paper, experimental S-parameter measurements

(34 GHz < j ~ 36 GHz) of a RAM sample which partially

fills a waveguide have been made using a Hewlett Packhard

8510 VNA with error correction applied. The RAM sample

tested was an artificial dielectric which consisted of a rubbery,

dark dielectric matrix material. The exact material makeup

of the RAM sample were unknown to the authors because

of proprietary reasons. The RAM sample was in the form

of a large flat sheet. The RAM sample was approximately
2.8 mm thick over most of its area except for one small

region which was approximately 1.09 mm. Experimental S-

parameter measurements were made of the RAM sheet for

the two thicknesses of ~ = 1.09 mm and ~ = 2.8 mm. The

measurements were made in a rectangular wav:guide (WR28)

whose dimensions were ii = 7.112 mm and b = 3.556 mm.

S-parameter measurements for the ~ = 1.09 mm thickness

were made on 12 strips of the 1.09 mm portion of the RAM

sheet (width 7.112 mm, length ranging from 4 mm to 16 mm),

and S-parameter measurements for the ~ = 2.8 mm thickness

were made on 11 strips of the 2.8 mm portion of the RAM

sheet (width 7.112 mm, length ranging from 2–14 mm). All

strips were cut from separate parts of the RAM sheet.

~
E= 61906- j 39423

/J=l

B=7.l12mm ‘r

6“ Q
+

~= 3.556 mm

f=35Ghz
+ a ++d

’004 ~=28mm
0904

<“

Numerical

Ewmnental

0004’1, ,,, >,,,,!,,,,,,,,,,, >,, ,,, ,,, ,,, ,,, ,
0,0 50 100 150 200
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Fig. 3. A comparison of the normalized power absorbed PAN =
Power Absorbed/PrNC is when calculated by the numerical model and

when measured when ~ = 2.8 mm.

100-

-“ 090-
%5-

080-

%3 070-
-g
. 060-

3 0,50
$

040-

: ~j~.

~% 020-

010-

000 1>
00 50 100 150 200

t (mm)

Fig. 4. A comparison of the normalized power absorbed PAN =
Power ~bSOTbed/PINC is shown when calculated by the numerical model

and when measured ~ = 1.0922 mm.

Figs. 3 and 4 show the results of the measurements. Because

the sample strips of the same ~ were all taken from slightly dif-

ferent places in the RAM sheet (with different 5, J parameters)

and the sample edges may not have been perfectly straight and

corners perfectly perpendicular, and because the strip samples

may not have had exactly the same height, the S-parameter

data collected appeared to be fairly noisy (Figs. 3 and 4). For

this reason, (32) (PAN = P.4/PINc = 1 – ISII 12 – [5’21 12),

which gives the normalized power absorbed in terms of the

S-parameters, was used to numerically model (that is least

squares fit &’, E“, N’, M“) the experimental data.
Fig. 3 shows a comparison with the experimental PAN

versus the modeled numerical PAN (obtained after minimizing

(36) using the numerical IMSL MATH/LIBRARY package

BCONF). In Fig. 3, the experimental data appears noisy with

perhaps a +0.1 derivation from point to point. The numerical

model appears to fit the experimental data in a reasonable way.

Two local maximums occur at approximately 6 and 12 mm in

both the experimental and numerical models, and broad local

minimums appear at 8 and 16 mm in both the experimental

and numerically modeled data. Both the experimental and

numerical curves also show an increase in absorbed power

as the sample length increases, which is physically to be

expected. Four modes were used to extract the numerical
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j.35Glu
U=l

d = 10922 mm
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~ d

(c)

~= 1.0922tam

(d)

Fig. 5. Plots of the power minimization error are shown as a function of&’
c“. The arrow shows the point which was taken to be the final minimization
point c = 6.1906 – J.39423.

model shown, and 14 modes were used to plot the curve

shown in Fig. 3. Virtually no difference in numerical results

occurred using either a 4- or 14-mode analysis. Fig. 4 shows

a comparison of the experimental and modeled normalized

power absorbed when ~ = 2.8 mm. As can be seen from

Fig. 4, a fairly good fit between the numerical model and

experimental data resulted for this ~ case. The higher value of

d produced more closely spaced resonances in the numerical

data than in Fig. 3. The numerical model used 4 modes to

model the experimental data of Fig. 4 and 14 modes to make

the plot shown in Fig. 4. Conservation of power according to

(19) was observed to a high degree of accuracy (w.03%) for

both Figs. 3 and 4.

Fig. 5 shows plots of the minimization error ~~fi (32) for

~ = 1.09 mm and ~ = 2.8 mm when the previously described

experimental data were modeled numerically. As can be see

from the plo~s, the ~ = 2.8 mm plots show two minima,

whereas the d = 1.09 mm data show only a single minima.

Only the mini-ma marked by the wow on the figures coincided

for both the d = 1.09 mm and d = 2.8 mm data. This value

(E= 6.1 –j.39, p = 1.) for j = 35 GHz was taken to be the

correct modeled experimental value.
Fig. 6 shows a plot & = E’ – j# versus frequency as

obtained from modeling the experimental data previously

discussed. The plots show that the 10SSYdielectric constant

c“ is nearly constant with frequency whereas the real part, s’,

drops slowly in value from about 6.7 to 5.9 over the frequency

range plotted.

W
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Fig. 6. The experimenkd modeling parameters e’ and e“ are shown as a

function of frequency.

000

-100

–2.00

-3,00

–4,00

-500

-e.oo

-7.00

-8.00 [

v--l n ~=1

c=61906-j39423

In6ni,,SAM.mver. \ .i. cL-- --CO*
Flat PM. (
tmlmsslc

. . .. . .- ,
(Icmy v FlatPlateVxpmmeml).—
onmalysis)

~ 2175cMx2175QU
RA&c*wemd

FlatPlate(X@&)

RAM Layer Thickness (mm)

Fig. 7. A plot of normal incidence reflectivity verses RAM layer thickness

is shown at ~ = 35. GHz for a RAM layer whose permittivity was modeled
from the data in Figs. 3–6.

The RAM sheet which was experimentally modeled

(Figs. 3-6) was placed in contact with a metal plate (21,75 x

21.75 cm) and the normal incidence radar reflectivity of’ the

system was measured experimentally [20]. The RAM sheet

was approximately 2.8 mm thick over most of its area except

for a small 4 x 4 cm patch located near the edge of the sheet,

which was about 1.1 mm thick. The measured experimental

reflectivity of the system was about – 4.8 dB. Using the

PFW experimentally modeled relative complex permittivity

and permeability values of e = 6.1906 – j,39423 and v = 1 at

35 GHz (Figs. 3–6), the normal incidence radar refle~tivity of

a RAM-covered infinite flat metal plate (thickness d) (Fig. 7

inset) was calculated using a lossy transmission line analysis.

The normal incidence radar reflectivity of a RAM-covered

finite size plate flat metal plate (same size as the expermmtal

plate) was also calculated (& = 6.1906 – j.39423 and p =

1 at 35 GHz) using a recently developed diffraction code

x-patch [21]. Fig, 7 shows a comparison of the numerical
and experimental results. As can be seen from Fig. 7, the

transmission line reflectivity shows a reflectivity minimwm of

about – 7 dB at a layer thickness of ~ = 2.6 mm. Considering

the fact that the experimental RAM sheet was not uniform, the

agreement between theory and experiment is quite good. An

interesting feature of the plot Fig. 7 is the fact that fairly tight
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8=4, 957 – j.2774

P=1236
:’~;a
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f = 35.Ghz +-L+

Fig. 8. The normalized power absorbed P.AN = power .4bSOTbd/pINc

tolerances on the RAM layer thickness 2.4 mm s ds 2.8 mm

must be maintained in order that the RAM sheet act effectively

as radar absorbing sheet at $ = 35 GHz.

Fig. 8 shows a 3-D plot of the normalized power absorbed

versus the layer height ~ (O < d < ~) and Z(O < 30 mm) for

~ = 35. GHz. The values of e and p used to model data in

Fig. 8 are listed in the Fig. 8 inset. The results of Fig. 8 show

that for low values ~ (d< 0.75 mm), that power is absorbed

smoothly and slowly into the material with increasing length

~, where for values of ~ > ~ >0.75 mm, the power absorbed

becomes oscillatory and very dependent on the length, ~,

of the sample. Numerical comparison of the power absorbed

when ~ almost equaled ; (Fig. 8), and the case when ~ = ;

were made (when ~ = ~, this is the filled waveguide case

and only a TEIO mode propagates in the dielectric sample)

and it was found that almost identical power absorbed curves

were obtained for the two cases, Overall, Fig, 8 illustrates the

type of signature or pattern that can be obtained by varying d

and L simultaneously to compare numerical and experimental

data,

The dashed curves of Fig, 9(a) show the inversion of (37a)

and (37b) when values of S.g = e = E. = 5.65 – j.5
and p~g = & = h = 1.53 – j.5 (this is considered the
exact h’t2HiiOn case since &ag = 6 = &a) are used to invert

(37a) and (37b), and the solid curve shows the result of

the inversion when C.g = 5.5 – j.5, E = 5.65 – j.5, and

V.9 = v = 1.53 – ~.5 are used to invert (37a) and (37b). (This
is considered the approximate inversion case since E # &a.)

In the inversion for this case, the terms lE~, IHN, PAN, and

Wfi”m in (37a) and (37b) were evaluated at &.g = 5.5 – j.5
and I.Lag = ~ = 1.53 – j.5, whereas the term W~par was

evaluated at &.g = E = 5.65 –j.5 and p.g = p = 1.53 –~.5.

In the case when the exact values were used to calculate the

integrals in (37a) and (37b), an almost exact replication of

is shown as a function of sample height and sample length.

E, ~ occurred, as can be seen from the flat dashed curves of

Fig. g(a). In the case when only approximate values of E, ~

were used in the integrals in (37a) and (37b), an oscillatory

deviation from the true values occurred, as is seen from the

solid curves of Fig. 9(a). Despite the approximate integral

values used for IEN, IHN, PAN, and WN, a useful estimate

of the sap. is obtained, Fig. 9(a) and (c) shows plots of the

integrals of IEN, IHN, PAN, and WN, which resulted when

exact and approximate values of &ag and ~.g are used. As

can be seen from these figures, the integrals that occur using

approximate or exact values are close to each other in value.

In Fig. 9(a) ~1 = 12 = .13 mm, and ~1 = 5. mm and

7,5 mm < ~2 s 17,5 mm. Fourteen modes were used to

generate all plots in Fig. 9(b) and (c),

The accuracy of the MOM solution of Section II for the

parameter case of Fig. 9 fore = 5.65 –j.5 and p = 1.53 –j.5

using 14 modes was checked using the Per, formula given by

(19) over the sample length range 0.5 mm ~ ~ <22.5 mm.

It was found that when only EZ and HZ field component

matching was used (p.. = O, pmC = O), that the maximum

power error that resulted was Per, = .0355%, which occurred

at L = 3 mm, and the minimum power error that resulted was
Per, = .0154%, which occurred at L = 18.5 mm. When the

E., Ez and HZ fields were matched using the Galerkin values

of (pn. = qna, pnC = qnC), it was found that the maximum

power error that resulted was P,,, = 19.64%, which occurred

at L = 2 mm, and the minimum power error that occurred

was P.,, = 2.09%, which occurred at ~ = 21.5 mm. At

~ = 5 mm, the Galerkin power error was F’e,r = 10.88%

and at ~ = 10 mm it was P,,, = 5.53%. Because much lower

power error matching results were provided by E% and HZ

field matching than by Galerkin matching, only E, and Hz

field matching was used in this paper. The power error results

just given were typical of all cases considered by the authors.
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Fig. 9. The parameter inversion, based on (35)-(39), is shown.

(a)

The variational solution of Section III was checked numer-

ically for the case when e = 5.65 – .5, p = 1.53 – j.5, and

~ = 5. mm the other parameters were those given in Fig. 9.

It was found that the variational solution for this case agreed

with the MOM (using E. and HZ field component matching

(P~a =0, p~~ = 0)) solution to a high degree of accuracy.
The exact inversion case analysis of e and ,u displayed by

the dashed curve of Fig. 9(a) serves as an extremely good

independent cross-check of the MOM solution and the varia-

tional solution presented in Sections II and III, respectively. It

is an extremely good cross-check because the MOM solution

and variational solutions of Sections II and III depend only

on the enforcement of the E. and HZ electromagnetic field

boundary conditions at y = O and y = –L, whereas a cross-

check of the Complex Poynting Theorem requires that all the

nonzero EM field components be integrated over the volume

V = Vbl + V&t (Fig. 9 inset) as prescribed by the energy

and power integrals of (35)–(39). The high degree to which

c and # are correctly inverted in the exact inversion case of

the dashed curved of Fig. 9(a) (S and v in the dashed curve of

Fig. 9(a) deviates approximately only 1 part in 10-4 from the

assumed exact values given) demonstrates the high degree of

numerical accuracy to which the Complex Poynting Theorem

is being obeyed and thus the accuracy to which the EM fields

of the overall system are being computed.

VI. SUMMARY AND FUTURE WORK

In conclusion, a novel method for determining the complex

permittivity and permeability of a material at K. band based

on TElo scattering, which occurs from a finite length sample

that partially fills a rectangular waveguide, has been presented.

The work presented here can also be directly applied to sample

analysis at W band. A MOM and a variational solution were

d =5,65 a=71mm

#.g = 5.50 ~=36rrun
#9=.+&=5 2,= J2 = l,3mm

fl’=Xl~=l.53 ~.5, mm

w = L& =.5 f =35. Ghz

020

010

0,00

-010

-0,20 k ‘N

developed to determine the EM fields and S-parameters in

the waveguide system. The numerical solutions were shown

to satisfy to a high degree of accuracy the EM field matching

conditions at the sample interfaces, to satisfy the conservation

of complex power at the aperture interfaces and satisfy the

Complex Poynting Theorem throughout the waveguide system.

An experimental analysis of a RAM sample was performed,

and its material permittivity and permeability properties were

determined by the partially filled waveguide method proposed

herein. Normal incidence plane wave experimental reflectivity

measurements were made of the RAM material (when it

covered a metal plate) and good agreement was found between

theoretically predicted reflectivity as calculated using the PFW

method proposed in the paper and the experimental results.

The are several ways that the present research work can

be extended to analyze more general waveguide cases. First,

if the material sample that partially fills the waveguide is

longitudinally inhomogeneous (s = s(y), p = N(y) in the

coordinate system of Fig. 1 inset), a MOM and variational

solution for this case may be developed by 1) dividing the

inhomogeneous sample into thin longitudinal slabs (each slab

is assumed to have uniform ~ and ,u parameters); 2) matching

EM boundary conditions from interface to interface; and 3)

solving the resulting matrix equations for the forward and

backward propagating modes in each section and for the

overall EM fields in the whole system.

A second more general waveguide case that can be analyzed

is if the material sample that partially fills the waveguide

is vertically inhomogeneous (& = E(%), P = P(Z) in the

coordinate system of Fig. 1 inset). This case may be analyzed

by determining the PFW modes of the system by the method

proposed by [15] and [ 16], and then carrying outfield matching

at the sample interfaces (y = O and y = –L), as has already
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been performed in this paper to find a MOM and variational

solution to the overall problem. The authors feel that, if the

sample had an unknown vertical inhomogeneous profile, the

proposed solution would be an ideal one for which an inverse

scattering analysis of the unknown profile could be carried

out. The magnitude and phase of S11 and S21 would probably

be very sensitive to the vertical inhomogeneous profile, and

thus observation of S11 and Szl would allow determination

of the profile. An analysis of the type just mentioned could

be important to the design of radar absorbing materials since

fabrication process in general may lead to nonuniform RAM

sheets.

A third generalization of the research would be to place

metal caps (aluminum foil, for example) over the endfaces

of the material sample that partially fills the waveguide. This

would cause the material sample and endcaps to behave as a

partially filled Fabry-Perot resonator. The analysis would be

carried out in the same way as already presented in Sections II

and III except that the analysis would require that the tangental

electric fields at the metal caps be zero. The metal caps placed

over the sample endfaces would make the waveguide system

much more resonant and possibly increase the sensitivity of

the measurement system to the sample material parameters s

and p.

A fourth generalization of the work would be to analyze

the PFW when the material transversely partially fills the

waveguide (in the x direction of Fig. 1 inset) rather that the

vertical z direction, as has been analyzed here. This case

would require a TEZ (Transverse Electric) vector potential

analysis [1] using the theory of Sections II and III rather

than a TM2 analysis, as has already been presented. Parameter

determination based on a TE2 and a TM. analysis would

provide a great deal of data from which to ascertain the E

and ,u parameters of the system.

A fifth area of research would be to partially fill the

waveguide with chiral material [22]–[24] (these materials are

useful as radar absorbers) and from scattering parameters to

determine the chiral parameters of the material.
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