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Measuring the Permittivity and Permeability
of a Sample at K, Band Using a
Partially Filled Waveguide

John M. Jarem, Senior Member, IEEE, James B. Johnson, Jr., Member, IEEE, and W. Scott Albritton, Member, IEEE

Abstract— A novel method of measuring the relative complex
permittivicy (¢ = ¢ — j<") and relative complex permeability
(0 = p' — 31") of a material at &', Band (26.5-40 GHz) using
a partially filled waveguide (PFW) (rectangular) and a vector
network analyzer (VNA) is presented. The method is based on 1)
placing a material sample of length L, width a (waveguide width),
and height d < b (b is the waveguide height) in a rectangular
waveguide, 2) measuring the S-parameters of the sample using
the VNA, and 3) inferring the ¢, ", y’, and p"" parameters by
comparing the experimental S-parameters with numerically gen-
erated .S-parameters. The paper presents a method of moments
analysis and also a variational formulation of the scattering that
occurs from a finite length sample that partially fills a waveguide.
Formulas to calculate the complex Poynting power and energy
in the waveguide are derived to check the degree to which the
numerical solutions obey the conservation of complex power.
Numerical methods to extract the material parameters from
the S-parameter data are proposed. The experimental PFW S-
parameters of a radar absorbing material are measured and its
dielectric material parameters are inferred.

I. INTRODUCTION

N IMPORTANT problem in microwave and millimeter

wave theory [1]-[24] concerns the determination of the
values of the complex relative dielectric permittivity, ¢ =
¢’ — j&”, and complex relative magnetic permeability, p =
w — qu”, of a material in K, (26.5-40 GHz) and W bands
(75-110 GHz). This problem has important applications for
biological tissue analysis, radar imaging of terrain (desert and
forest) and design of radar absorbing materials (RAM). At the
present time, there are several techniques for measuring ¢ and
1. These are 1) placing a material sample in a millimeter wave
cavity and measuring the perturbed quality factor of the cavity
and from this determining the ¢ and g of the sample [1]; 2)
placing a uniform layer of given thickness of sample in free
space, illuminating the sample with a normally incident plane
wave and from its transmission and reflection coefficients (or
S (scattering) parameters (S11, S12)) [2]-[8], determining the
sample’s £ and p; 3) placing a sample of material of length L
in a waveguide (the material fills completely the waveguide’s
transverse cross-section) illuminating the material with a TEqp
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mode, and from the reflection and transmission coefficients
(S11, So1) inferring the ¢ and y of the sample [9]-{12]; 4)
placing the sample near an open-ended TEM probe and from
the measurements inferring the material properties [13]; 5) use
of an open-ended Fabry-Perot resonator [14]; and 6) use of a
Fourier transform spectroscopy [14]. Ref. [14] gives a survey
of current near millimeter wave measurement technology as
applied to determination of the absorption coefficient and
index of refraction of a material.

Because of the high frequencies and small wavelengths of
K,(A =2 8 mm) and W(A = 3 mm) bands, all the methods
mentioned above have some limitations for measuring the
permittivity and permeability of a given sample. The quality
factor method requires a cavity roughly 10 mm on a side,
and a sample of 1 or 2 mm in cross-section. Also extremely
precise dimensions of the cavity feed probe are required, along
with knowledge of the probe's effect on the quality factor
measurement. The free space layer measurement is limited at
K and W bands because the layer requires accurate alignment
of the normally incident wave, and requires an accurate
uniform thickness of the layer over a large transverse area for
the magnitude and phase (S11 and Sa1) of the reflection and
transmission coefficients to be measured accurately. Unless
the sample’s dielectric parameters are spatially very uniform,
the measurement also only gives an average value of ¢ and
1 in the sample. If the sample consists of large permittivity
and permeability values, very thin sample layers are required
over a fairly large areas (10 cm x 10 cm). The S-parameter
waveguide method is also limited at K, and W bands because
it is difficult to place a thin sample in the cross-section of
the waveguide and have it be exactly perpendicular with its
flat surface exactly normal to the longitudinal waveguide axis.
Very slight misalignment of the sample, particularly if the
sample is of high dielectric value, can cause large error in
the magnitude and phase of the reflection coefficients, thus
causing nonrepeatability in the data collection process. If the
sample is of high dielectric value, a very small change in
the sample’s length can cause a large change in the sample’s
reflection and transmission coefficients.

The purpose of this paper is to propose a novel method
of measuring the complex permittivity and permeability of a
material sample using partially filled waveguide (PFW) theory
[11, [15]-[16] and method of moments (MOM) theory. The
novel method consists of partially filling a rectangular wave-
guide with a material sample of length L, width &, and height
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d, (d < b,b = waveguide height), illuminating the sample
with a TE;o mode and from these experimentally measured
reflection and transmission coefficients (S11, So1 parameters)
inferring the ¢ and p of the sample. The &', &, u/, and p”
of the sample are inferred by using a PFW, MOM analysis
to calculate the Si; and Ss; parameters of a material sample
of a given (¢, €”, p/, and p”") and then least-squares curve
fitting these S-parameters to the measured S-parameter data.
The proposed PFW method represents a generalization of the
filled waveguide (FW) method presented by [9]-[12], which
depends on a TE1q analysis for the parameter determination.

The authors feel that this is a useful way to measure ¢ and
 at K, and W bands for several reasons. First, as the height,
d, of the sample is reduced, it requires a larger sample length,
L, to observe significant reflection (Sy;) and transmission
coefficients (S21), as compared with the FW method. Thus
at K, and W bands, the height, d, can be reduced until a
comfortable working length, L, of the sample (10 mm to 25
mm) can be obtained. This is much easier to work with than
short length samples. Second, the proposed waveguide method
allows measurement of the S-parameters over a wide range of
height values, thus supplying a large amount of measurement
data from which to determine € and p. Each different partially
filled height, d, exposes the sample to EM radiation in a
different and unique way to every other waveguide height.
The accumulation of data in this way adds to the certainty
of the final answer. Third, placing the sample in a waveguide
which is partially filled, the lower waveguide wall is a natural
mechanical support for the sample.

The numerical solution presented here is closely related
to Strube and Arndt’s [17] analysis of a shielded dielectric
image guide. Ref. [17] analyzed the reflection that occurred
when a TE;p mode was incident on a semi-infinite section of
dielectric image line. The work presented here is a limiting
case of when the image line of [17] fully fills the waveguide
transversely. However, in [17] the length of the image line is
semi-infinite, whereas in the present analysis a finite length
is analyzed. The authors feel that the solution presented here
represents an interesting limiting test case for the image line
transition presented in [17]. In other words, the solution of [17]
should approach the solution presented here when the width of
dielectric image line approaches the width of the waveguide
(and L — oo).

II. METHOD OF MOMENTS SOLUTION

The determination of the electromagnetic fields that result
when a TE;o waveguide mode (the only propagating mode)
is incident on a slab of material whose relative dielectric
permittivity is e = & — je'", whose relative permeability is
p = ' —ju’, whose width is @ (transverse waveguide width),
whose length is L, and whose height d (Fig. 1 inset) is a three-
step procedure that consists of Step 1: determining the forward
and backward propagating modes that exist in Regions (a), (b),
and (c) of Fig. 1 [Region (b) is composed of Regions (b1) and
(b2)]; Step 2: expanding the unknown fields in Regions (a), (b),
and (c) in terms of the modes of Step 1 (unknown complex
amplitude coefficients are assumed to multiply the modes);
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Fig. 1. The values of the first three PFW propagation constants and the val-

ues of the first three FW propagation constants are shown. The interconnecting
line between the PFW and TE propagation constants shows the intermediate
steps used in the search for the PFW propagation constants.

and Step 3: matching electromagnetic boundary conditions
at the aperture planes (sample incident side) and § = —L
{sample transmit side) to define a matrix equation from which
the unknown amplitude coefficients of Step 2 may be solved.

After a lengthy TM,, vector potential analysis of Maxwell’s
equations in the empty waveguide region of Fig. 1 inset [Re-
gions (a) and (c)], [1], and the partially filled waveguide region
of Fig. 1 inset [Region (b)], [1], [15]-[16], the electromagnetic
fields of Steps 1 and 2 for Region (a) are

E! = ana (y) cos ke sin kyn 2,
n=0
o
E2 = pnaLp(y)sinkyzsin k.2,
n=0
[ee)
E; = Z T (y) sinkyx cosk,pz,
n=0
H, = ! is L(y) sinkgz coskopnz
= 'r’o o natn x 2nLs
a 1 >
Hj = — Una T (y) cos ke cos kunz
Mo 0
where kp = % mo=1 kyp = % n=0,12,...
e = — kzkzn s = ~EgqYan
na — LtaEa — ]{;2 y Ona — UaEa — k§n7
_ Kyna + ko e = Eaky
pna - Wan k) na /Jla&_a _ kgn
Flbata — k2 - k2 ]1/2: Ha€q — k?p - an Z 0
Yan = [kz + ]{:2 _ l‘aea]l/ . Maa — k‘2 _ ]{:2
n=01 Q'

3 ? ti
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o 2r  2nf
= B =3 k=2 =L
T’O €o ? )\ c Y
¢ =3 x 10® m/sec
f = frequency (Hz)
Tna(y) = E{Laén,oevany + Efae_7any7
Lna(y) = Eiaén,oe%ny - Efae_%nyv
T =koZ, Yy=koy, z=koz
a= ko, b=kob, d=kod, L=k,
1 n=0
bno = {0 n # 0. )
El. n=0is the amplitude of the incident TE;y mode, E,

are the unknown reflection coefficients which result from the
sample located at y = 0, p, is the relative permeability of
Region (a) (14, = 1 in this paper), £, is the relative permittivity
of Region (a) (¢, = 1 in this paper). z, y, and z are normalized
coordinates, and a, b, d, and L are normalized dimensions.
All insets are given in terms of normalized coordinates and
dimensions.

The solution for Region (c) is given by replacing in (1), a
by ¢ and taking 7,,.(y) and L,.(y) to be

Tncly) = Ex.e= W0, L (y) = Ble®t. (2
ET are the unknown transmission coefficients which propa-
gate away from y = —L (sample end) in Region (¢).

The fields in Region (b) are given by

Eg = ZTnb(y exn(2) cos k.
ES = ZL"” Y)eyn(2) sink,x
Ei’ = Z T (y)ezn(2) sin k,z
n=0
Ht = 1 ZL o(y z)sink.x
Togne =
1 o0
Hs == Z Top(y)hyn(2z) cos kyx
Mo =4
where
Tnb(y) — E:be%”y + B ey
Lnb(y) — E:be'}’bny _ E;be“%”y
where
e - rln sinh v;1, 2, 0<z2<d
wn $2n SlnhyzZn( - b), d<z<b’
e — yln Slnh’Yzlnz, 0 S 4 S d
yn Ayonsinhveon (2 —0), d<z<b
ezn =

Azoncoshy,on(z~-b), d<z<b’

mln cosh v,1, 2, 0<z2z<d
Hyoncoshy,e,(z—b), d<z<b

yln cosh v,1nz2, 0<z2<d
Hyop coshyon(z—08), d<z<b

{ +1n COSh V,102, 0<z<d
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g k:z z2n
Amln = ( bz)kx’}/zlnc A22n7 AmZn = (2_’72‘5“)14%271
€p1 kw ~ Yin

Ep2 b 2
Ayln = _rybn’)/zlnCnAz?na AyZn = (];anryz > )AZZn
bn
5b2
Azln - _(k - fon)C AzZna AzZn =1
€p1
Yon
Hxln = _EbQ’YannAzZna Hx2n - _5b2k2_"§'Az2n
z " Ibn
Ebgk
Hyln = ep2kr CrnAsan, Hy?n = kg__‘w‘g“ 22n
z ™ Von
1 cosh v,0,(d — b
C. = Ve2n(d —b) 3)

]{}123 - 7{?7,, cosh ’Yzlnd

E, is the unknown amplitude of the PFW mode traveling
to the right and £, is the unknown amplitude of the PFW
mode traveling to the left in Region (b). sy, is the longitudinal
propagation constant of the nth PFW mode and satisfies the
well known PFW cigenvalue equations

szln Yz2n
€b1

0= ’yzzn + ’an + Lbi€h,

tan h’yzlnd— tanh'yzgn(d b) (4a)

i=1,2. (4b)

Lps 18 the relative complex permeability in Regions (bl) and
(b2), respectively, and e, is the permittivity in the Regions
(bl) and (b2). In this paper pe2 = 1, ep2 = 1. Also 551 =
e =c¢ —je" and ppy = p = ¢/ — ju' are the unknown
relative permeability and permittivity of the sample which is
to be determined.

Three different waveguide modal methods have been tested
to numerically enforce EM boundary conditions at the inter-
faces y = 0 and y = —L. In the first method, only the E,
and H, field components were matched at the interfaces; in
the second method, the transverse electric and magnetic fields
were dotted with themselves and this dot product was matched
at the interface (Galerkin method); and in the third method,
the E., E.. and H, field components were all individually
matched at the interfaces. In all three methods, enforcement
of the boundary condition is imposed by multiplying the field
or field components by waveguide modes and integrating the
resulting expression over the waveguide cross-section.

The EM boundary conditions in the first and second methods
are given by the equations

s

N
€tn

—_a.C a/Z-va,.c ___\b
B ds = / cr B ds
y=0t,—L CSs. y=0—,—L+
T
/ h‘tn
c.s
—a,c T b
-H dS = / hy, +H ds
y=0+,—L— C.s y=0—,—L+
)]
where
"ATG/ - A - A
€4n = Pna COSKk,xsink,,zZ + sin kyx cos k22
_T*®

by, =sink,xcosk,,zz 6)
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a _T°

and where ?:; and h,, are given by (6) with a replaced
by c¢. The boundary matching equations of the first method
are given by pn, = pnc = 0, and the boundary matching
equations of the second method are 7gcilxien by pra = Gne and

A1"01,!3 —_—
Pnc = Gne. Because e,, and h,, (I' = test) involve
waveguide sinusoidal modal fields in Region (a), they satisfy
the orthogonality relations

B

e
/ Con o dS = MO6,
Cs.
e __poe
/ Ren * hy dS=Nppn n,n =(0,1,2,...)
C.s.
)
€ tn = Gna COS ke sin k., 2@ + sin kyx cos k., 22
—E®
By, = sinkyz cos kyn 2@ ®)

_E° —E°
and where e,, and h,, are given by (8) with a replaced by
c. The matrix equations for the first and second methods for
E}, and E, are given by

00
ZEilaénl,O = Z {[IEan’,n + IHan',n]E;l,—b

n=0

+ [IE’an’,n - IHan’,n]E;b} (9&)
s
0= Z {e—’ynbL[IE’cn’,n - Ich’,n]E;ll_b
=0
+ ™ Ipentn = Tneni ol By} (Ob)
where
IE . 2[pn’aIewn’,n + Iezn’,n]
an’,n b[pn’aq'n’a —+ (]_ + 507,,1/)]
21ﬁwn’n
Igon n = ——0tr— 10
Han N bsnla[l + 50771,] ( )
where
Iexn’,n = AmlnIlex(n/u Tl) + AGEQTLI?EI (TL,, ’fL)
e AzlnIlez(n/a n) + Az2nI2€Z(nlvn)
Iha:n’,n = Hxlnllez(nlv TL) + Ha:2n126z(n,a ’I’L)
d
Lew(n',n) = / sin kon 2z sinh ¥,1n2 d2
Ob
Dyer(n',n) = / sin k,p z sinhy,0, (2 — b) dz
d
d
Iiex(n,n) = / €08 ko 2 cOSh Y102 d2
Ob
I, (n',n) = / cos k2 coshvy,on(z — b)dz.  (11)
d

The Igen n and Igens ., terms are found replacing a by ¢ in
(10). Once B, and E, are determined, (1)~(3) may be used
to find EE and EI.

The third method of matching boundary conditions is the
method used by [17] to match EM fields for the dielectric
image line-rectangular waveguide transition interface. There
is a significant difference in the boundary matching of the
present problem and that of the dielectric image line. In the
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problem of [17], it was possible to 1) choose the number of
waveguide modes used for expansion (longitudinal TE and TM
rectangular waveguide modes) and the number of dielectric
image line hybrid modes used for expansion equal to one
another; and 2) enforce (that is multiply each EM field com-
ponent by the proper waveguide modal function and integrate
across the waveguide cross section) the tangential boundary
conditions of each EM field component using the rectangular
waveguide modes as test functions. In the present problem, it
was not possible to do this because the waveguide expansion
functions consisted of N,, TM, rectangular waveguide modes
(mode number n = 0, N, — 1) in Region (a) and N,, TM,
rectangular waveguide modes in Region (c). At each interface
there were N, — 1 F, rectangular waveguide modal coefficient
equations, N, F, rectangular waveguide modal coefficient
equations and N,, H,, rectangular waveguide modal coefficient
equations that had to be enforced. With two interfaces, this
led to 2(3N,, — 1) rectangular waveguide modal coefficient
equations that had to be satisfied. For a square matrix equation
which was analyzed in this paper, it was necessary to choose
2(3N, — 1) - 2N,, = 4N,, — 2 forward and backward PFW
waveguide modes as expansion functions. This choice made
the number of PFW expansion functions 4N, — 2 unequal to
the number rectangular waveguide expansion functions 2V,,.

All three boundary matching methods were tested numeri-
cally (for p, = pe = 1, €4 = €. = 1) on a number of different
parameter cases (different L, e, u, d). It was found that the
third method gave extremely poor, unusable numerical results
when the matrix equation was solved. It was also found that
the pne = pnc = 0 set of values gave far more accurate
complex power conservation results and far more accurate
matching of the aperture fields than did the Galerkin values of
Pra = Gna, Pnc = nc- For this reason, the first method, that is
the pne = pre = 0 values, have been used in all calculations
in this paper. Because of the extremely poor numerical results
as found by the third method and because this is the boundary
matching method used by [17], the authors believe that the
present problem cannot be treated as simply a limiting case of
the rigorous dielectric image line analysis as presented in [17].

Using the first method of boundary matching, ppg = pne =
0, the S-parameters are calculated using (9) from the equation

ER ET
St = EZ’ 891 = EZ—: (12)

provided e, = e, = 1, ug = pe = 1. Because the sample is
isotropic, we note that Sgg = S11 and S12 = Sa;.

To cross-check the numerical MOM results of (9a) and (9b),
the authors have also derived a variational expression (Section
III) for the admittance of the sample Yg, (Y5 = %_T_—ﬁ where
R = EE). The admittance Yy is referenced at the y = 0
plane. It turned out that the variational admittance expression
depended only on matching of the E. and H, EM fields at
the y = 0,—L interfaces for its derivation. Based on this
information, the authors believe that the pp,, = ppc = 0
values (which correspond to only F, and H, matching at
y = 0,—L) give better numerical results than the Galerkin
values Pna = Gnas Pnc = Gne (Which correspond to matching
of a linear combination of the fields F, and F., and matching
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of the H, field) because the p,, = Gna, Prc = Gnc values
cause a larger error in the E, field than do the p,, = O,
Pne = 0 values because both the F,, and E, are being forced
to equality when the pnq = Gna, Pne = gnc values are used
rather than only the E, field alone, as occurs when the p,,, =
0, pne = 0 values are used. The larger error in the F, field,
as occurs in the Galerkin case, thus causes overall worse
numerical performance than the p,, = pp. = O testing values.

There are two important numerical cross-checks that can
be made of the formulation as given in (1)—~(11). The first
involves the calculation of the eigenfunctions e, of Az, (3).
Collin [18] has shown that for a transversely inhomogeneous
and anisotropic waveguide, from the reciprocity theorem, that

if £, and H,, are two PFW modes, then

/ EnzH, 4,dS=0 (13)
C.S.

when 7y, # ~,. Substituting different modes from (3), we find
that above equation reduces to

d
0= AzlnHzlm/ cosh v,1n2 cosh ¥ 1m 2 dz

b
+ A onHzom / cosh ¥,2,(z — b) cosh v,2,, (2 — b) dz
d

Vo 7 Vom (14)

where all constants are given previously. Extensive numerical
testing of (14) has verified the above orthogonality equation
to a high degree of accuracy.

The second numerical cross-check involves the numerical
accuracy of the MOM solution as given in (9). The accuracy
of the numerical solution may be checked by comparing
the complex Poynting power that flows across the interfaces
y = 0 and y = —L as calculated by the Region (a), (b),
and (c) solutions. After algebra it is found that complex

power Po(y) = Pr(y) + iPx(y) = 2fcs )x H
(y) - (—d,dS) at a plane
1) y > 0 in Region (a) is given by

.b oo
Po(y) = =5 F Y shala(®)Lna @)1+ b0n) (1)
n=0
2) —L < y < 0 in Region (b)
Po(y) = “‘JFZ Z Ty (y) L (9)IEm(n/,n)  (16)
n=0n’=0
3) y < —L in Region (c)
b N «
Pc(y) - _E—F;SncTnC(y)an(y)(l + 60,") (17)
where F' = m
Igg(n',n)

d
:Azln’H;-kln/ coshy,1nr2 coshyl;,,zdz
o

b

+ A on HYy, / cosh Yo/ (2 — b) cosh 3y, (2 — b) dz.
d

(18)
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The accuracy of complex power matching from the numer-
ical solution at y = 0 and y = —L was measured by the
normalized power error equation

P.rr = [|Po(0%)—=Pc(07)|+|Po(—L*)—Po(—L7)||/Pinc
(19)

where
Pae = be” BL', =T 20)

Prne is the power of the TE g incident mode.

III. VARIATIONAL SOLUTION

Instead of the MOM, an alternative method of determining
the S-parameters and EM fields of a finite length, partially
filled waveguide sample, is to form a TE; aperture admittance
variational expression on the input side of the material (y = 0),
and using this expression extremalize the resulting expression
to determine the reflection coefficients of the sample and from
this the EM fields of the system. We use a similar variational
analysis as presented by Galejs [19] to determine the aperture
TE;¢ admittance of a rectangular waveguide feeding a ground
plane aperture.

To begin the analysis, we evaluate the £, electric field at
y = 07 [Region (a)]. We find

E.4(z) = EX(z,2z,0")/sink,x

=a,(1+R)+ Z A, COS k2 (21

n=1

where B = EE /EI is the TE;q [Region (a)] reflection
coefficient, a, = Zﬁf: E u(z)dz. a, =

%fob EZA(z)
coskumzdz, n =1,2,3,.... At y = 07, we find

E.4= Eﬁ(a:, z,07)/sink,x

(e

=Y (Ef, + Ej)ean(2). (22)
n=0

If this equation is multiplied by A, () and integrated from 0
to b, and the orthogonality property of (14) is used, it is found

1 b
E:b +E, = —/ haon(2)E,4(2) dz,
an fel
b
Ny =/ €an(2)hgn(2) dz. (23)

After equating the H, field at y = 07 and y = 0~, we find

1-R)+ i Snig{—an ) cosk,z
n/=1
P

At this point, it is convenient to use matrix notation. Using
(23), we may express £~ in terms of ET and after letting

Soalo(

hent (2). (24)
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Et'=[E},,Ef,,.. ), E™" = [Ey, Ey,...] we find from (9)
and (10) (Pn’a = Pniec = 0)

E = £2_1£1E+ = ébﬁ-{-

gl = [e_%nL(IEcn’,n - Ich’,n)]a

£2 = ["'e%nL(IEcn’,n + Ich’,n)]- (25)

The —1 superscript means matrix inverse and the ¢ superscript
means transpose.

After expressing (23) in matrix form, we find
Et = f:EzA(z’)g + R]! gb_lﬁw(z’) dz'  where
N_.b_l = [(1/Nen)bumw] £ = [bnn], and h;(z’)’ =
(heo(2'), hei(z),...]. Substituting ao, an, E_,, and

E;L,b from (21)—(25), respectively, (24) may be expressed in
terms of the F,4(z). We have

1(1-R) r°
St T+ R) J,

- / " Bal?)

X { Z 28na 08 kznz COS kon2' + BL(2)AR,

E,a(z) dz

(z)}

(26)

where A = N, L IL+R W v [I - R,]. If we multiply the
above equation by E, A(z) integrate from 0 to b (following
[19]), and perform a small amount of algebra, we find

(1=R) [ s Eea(2)E.a(2)G(z,2)dz'dz
(1+R) D?
where G(z,7) = Gi(2,7') + }[Gaa(z,7') + Gaa(z,7')],

Gi(z,?) = Zfl%ﬁcoskmzcoskmz’, Gou(z,2') =

%Q;(z’)éhw(z , D= fo E, adz.

Galejs [19] shows that the above expression, because the
function G(z,2') is symmetric in z and 2/, produces an
admittance Y, = };%, which is stationary or insensitive to
small error in the aperture field E, 4(2).

Equation (27) for Y; may be extremalized by expanding

b =

n=1

Vs =

27

E.a(z) =E¢+ Z E,cosk,nz
n=1
= Eo|1+ ) encos knz} (28)
n=1
where
En = En/EO

Substituting this expression into (27) and then setting g—zfj =90
for n = 1,2,..., the aperture admittance using the above
E,a(z) expression is given by

Y, = ZCne + Z Z Ky prepienn (29
n/=0n""=0

Where Cn = Tﬂo?’ Kn/ n! = 2bs [hanA hzn’ +hwn1A hmn”]

Bon [fo «0(2) coskznzdz, [) ho1(z)coskenzdz, .. | Af-

ter differentiation, the final matrix equation to determine e,
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is given by
oC
—Kno =3 [Gubrmr + Kos o Jens. (30)
n/'=1
1-Y,

The reflection coefficient R is determined by R = 353*,
and Y is determined from (27) using the e, as resuits from
(30) substituted in it. When the sample extends to infinity
(L = oo),__]_%__b = 0.

IV. MATERIAL PARAMETER (¢/, ") p/, u") ANALYSIS

The sample material parameters ¢ = ¢’ — j¢’ and p =
' — ju’ (Fig. 1 inset) may be determined from laboratory S-
parameter measurement data (collected over a suitable range
of sample lengths, L, and sample heights d, using the MOM
solution of (9) (or variational solution) in two ways.

First, an S-parameter error function between the measured
complex S-parameter data (S74,53f) and the numerically
calculated complex S-parameter data (Si1, S91) is minimized
with respect to four independent variables (¢/, £, y/, and p”)
to find the values of &', ", u', and p” which most closely
correspond to that of the measured sample. When the mag-
nitude and phase of the S-parameters can be measured accu-
rately, a useful error function to obtain the sample parameters
is given by the S-parameter error function

Sel‘!‘(el, E”, NI, MH)

I 1

=> > {Isi(d, L«)

i=1i'=1

_ Sll(di, Li', EI, 6‘”, UI, Ml/)[?

+ 183 (ds, L)

= Sar(dy, Lur, € &, iy u")*}. Gh

When the S-parameter data (magnitude and phase) is noisy,
an alternative error function that can be used is one which
is based on the normalized power that is absorbed (as heat)
in the sample. The normalized power absorbed is the power
absorbed by the sample, divided by the incident power of the
TE;o mode. The power absorbed error function is given by

err ZZ PAN d“ L

1=]1 /=1
“PAN(du Lz’, 5/a 5“, ﬂ'la NH)]2 (32)

where

Pin(d, L) =1—|Su1|> = |S21]*. (33)

In the present paper, S11 and Sg; have been calculated for
a given (&', ¢, ¢/, and u) by (1)—(12), and S** and P57
has been minimized by the IMSL package BCONF.

A second way that the parameters (¢/, ¢”, p', and p”) of
the sample can be determined involves the use of the complex
Poynting theorem. Assuming that the incident TE;o mode
arises from a source at y = oo, the complex Poynting theorem
as applied to the volume, V(V = V1 + Vi) and the surface,
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S (S encloses V), (Fig. 9 inset) assumes the form

Ps=0= %% ExH -a, dS+Pd+j2w(WM~WE) (34)
where
Pd - Pde + Pdm
1 bl blx
Py = Zwepe” E -E 4V
2 ‘/bl
1 b1 bl
Py = —wpgp” H ‘H dv
2 Vi1
bl _blx
Wy = 22 [,/ H -H 4V
Vi1

~ £0 bl b1t
Wg = — E'/ E E dJdV
4 Vi1

Vext N
+/ e E-E* dV

where V3, is the volume over the sample, Vi is a region
in V but exterior to Vi1, Pge, and Py, represent the time-
averaged electric and magnetic power which is dissipated in
the sample (this is the only place in the system where energy
is dissipated), and W, and W represent the time-averaged
magnetic and electric energies stored in the volume, V. In all
calculations in this paper, the ul,, and el of the Vi region
is assumed to be 1. If Regions (a), (b2), and (c) were different
from free space, then the appropriate 4., and €., would have
to be evaluated there, also Pg = 0 as there are no sources of
power in volume V.

The closed surface integral is integrated over the two end
faces (Fig. 9 inset) (located at y = ¢A;/2 and y = —L —
#'Xg/2) and over the waveguide walls. £ and ¢ are large
positive integers and A, is the normalized guide wavelength
of the TE1( propagating mode which exists in Regions (a) and
(¢). The integers £ and ¢’ are chosen to be large enough that the
evanescent fields of the interfaces at y = 0 and y = —L make
a negligible contn’bution to the end faces of S at y = E’\ < and

y=—-L — . Because the waveguide walls are perfect
conductors and the tangential electric field there is zero, no
contribution to the closed surface integral is made by the
waveguide walls.

Because the waveguide walls make no contribution to the
closed surface integral and because the evanescent fields in
Regions (a) and (c) don’t contribute to closed surface integral
over V, (because the end faces are far from the sample
interfaces), the value of the entire closed surface integral
only depends on the incident (E!,), reflection (S11EL), and
transmission (S21EZ,) wave amplitudes of the propagating
TE19 modes of the system. Thus the entire surface integral is
a quantity that can be expressed in terms of the measurable
S-parameters, S1; and So;.

After evaluation of the known closed surface integral (real
and imaginary parts) in terms of the measured S-parameters

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO 12, DECEMBER 1995

and evaluating the energy integrals of (34) in Regions (a) and
(¢), then expressing these integrals in terms of integrals over
the evanescent electric fields evaluated at the interfaces, and
after extensive algebra, it is found that the real and imaginary
parts of (34) give

Flp"Igy + " Ip]

a

aob
= FﬁM—IE({a 21— |S11]? = |S21]3] = PivePan
(35a)
Flp'Iygy — ' Ip)
= F{ — ol — epo1Ee]
ib - * M* (gt
-1 mag{ 5 Z:l ShaTna(07)LY, (0 )}
—Ima’g{ Z Snc nc ( ~-L~ )}
2 Q:Ob .
+ ﬁ—lSH‘SlH 911|E£al2}

= PincWn = Pine(WRE + W) (35b)

1 A _ j6
where Ppo = 1, € = 1, 511 = 1511[61 11

Z Z{ AmnA'mn’Issz(n n )

n=0n'=
+ AzznAyzn/Icci(n n )]ITT(n ?’L/)
+ Aym e Lssi(, /Y p(n,n')}

= Z Z {HminH;mrILL(n> 'n'/)

n=0n'=0
+ Hyon H i Irp(n, 0/ ) Hees (n, '), 1= 1,2

d
Ici(n, n'):/ coshv,1nzcoshv)y, 2 dz

b
Ieo(n, n) = / cosh V295 (7 — b) cosh v,/ (2 — b) dz.
d

I (n,n'), i = 1,2 is given by with sinh (hyperbolic sine)
replacing the cosh (hyperbolic cosine) in these terms. Also in
(35

Irp(n,n') = / T (y)Top(y) dy,
—L
Ipp(n,n') = /LLnb(y)L:,’b(y) dy

The Ig; and Ig; (i = 1,2) integrals come from the volume

integrals f,, E- E dV and [, H - H dV which occur in
(34). Imag{} means the imaginary part. The sums in (35b) are
summed over the evanescent modes in the aperture. This is
why the sum of these terms starts at n = 1. The term W™
in (35b) refers to S-parameter term in the right hand side
(RHS) of (35b) and W™ (num refers to numerical, N refers
to normalized by incident power) refers to the other terms in
the RHS of (35b). If (35a-b) are divided by P, (therefore
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normalized) and we let Igy = Ig1 and Igy = Ig1/Pinc.
(35a-b) become

MIIHN(d, L) + Z:JIIEN(d, L) = PAN(d, L)

WIgn(d,L) —'Ign(d. L) = Wn(d, L)

= Wr'™(d, L) + W™ (d, L).

(36b)

(362)

If (36a) is evaluated using two distinct values of the ordered
pair (d, L) (that is, evaluated at (d1, L1) # (dz, L2)), a 2 x 2
set of nonlinear equations is produced from which p” and &’
can be inverted. If (36b) is evaluated at two distinct values
of (d,L), (36b) produces a 2 x 2 set of nonlinear equations
from which ¢’ and ¢’ can be inverted. The explicit way p”
and €” occur in (36a) is suggestive of using an approximate
2 x 2 linear determination of p” and €” in (36a), with the
Igwn, Ign, and P4y of (362) approximated by values close
to the true values of 1/ and £ in (36a). The same applies
to the determination of ' and &’ in (36b). That is inverting
linearly (k = 1,2)

AUJ,aIIHN(Eaga Hag, dk7 Lk)
+ &‘ZIEN(éag, Hag dk, Lk) = PAN(eag, Mags dk7 Lk)
(37a)

and inverting linearly (k = 1,2)

e I N (€agy Bags Aks L) = €aIEN (€ag) fag, Ak, L)
= WN(Eag, thag, dg, Lk) = Wzr\lrum + W;;)M (37b)

where p,, and e,4 are approximate guesses of the sample
material parameters y, and ¢ and p,, £, are the inverted
values. The &', &”, p', and p” determination proceeds by
(1) placing in the P4y and WF* terms the measured S-
parameters S} and S3{ from the experiment, (2) calcu-
lating IHN(Eaga Hag; dk7 Lk:)a IEN(£ag7 /LagadlﬁLk) and
WR™ (000 fag, di, L) numerically, and (3) carrying out the
2 x 2 inversion.

These equations can be useful for helping to determine
g, &'y and i in several ways: First, if (31) has been
minimized and a fairly good approximate value of e, €qq,
Hog, and p, has been found, these equations can be inverted
for the parameters /,, €//, u/,, and p, to check the consistency
against the parameter values found from the S-parameter error
in minimization. Second, if many 2 X 2 inversions are made
for a wide range of values of L and d, any noise present in the
measured data S} and S{ may be averaged out. Third, the
equations may be useful to rule out false minimums which may
occur when minimizing (31). A negative or ridiculous value
of the permittivity or permeability values of the sample would
immediately rule out those values from the minimum found.
Fourth, (35a and b) are useful, as they could be combined
with the search algorithm to predict new values of &/, &”,
i, and p”" when minimizing (31).

V. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, we present some numerical and experimental
results of the theory presented in Sections II, III, and IV.
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Fig. 1 shows a plot of the real and imaginary parts of the
first three PFW modes normalized propagation coefficients
as determined from (4) for values typical of a RAM sample
which was tested experimentally (Fig. 4). Fig. 1 inset shows
a side and front view of the rectangular waveguide geometry
containing the material sample. The PFW modes propagate in
Region (b). All coordinates and dimensions in the inset (and
in all insets in this paper) are dimensionless and given by
(1). The roots 43, were determined numerically by solving
(4) for vfn using the IMSL package ZANLY and then taking
the square root of 2. In order to insure that all modes were
found, the TE1,, ~»n roots of a filled waveguide (FW) were
first computed, and for a given mode this root was used as
an initialization point to:find the PFW mode. In most cases,
the TE1., Vb initialization root was not close enough to the
associated PFW ~,, value in order to find the associated PFW
root using the IMSL MATH/LIBRARY package ZANLY. The
authors overcame this initialization problem by placing in the
PFW values for €y and ppe which were initially close to
those of the FW case (that is eps = ep1 and ppe =2 p1),
then calculating the 7, roots of this case and using these new
roots as new initialization points. By repeating this process
many times, each time moving €9 and e closer to that of
free space, it was possible to find a smooth root transition to
the final PFW root 7p,, which was desired. The points marked
“4” in Fig. 1 show the TEy,,, Vs, FW initialization points, and
the points marked with “s” show the final PEW root . The
starred line between the “+” and “x” show many intermediate
PFW roots for values of €32 and upo which are intermediate
between the FW case (2 = 1) and (pp2 = pp1) and the
final PEW case when Region (bl) is free space (gpo = 1,
tp2 = 1). As can be seen, a smooth transition occurs between
the FW and PFW cases, thus guaranteeing that'all PFW modes
have been found. In the numerical case shown, b = 3.556
mm, thus because b=2.8 mm > %, it was logical to start the
overall initialization from an FW initialization point. When
d < % the same procedure as just described can be used,
except that an unfilled waveguide can be used to initialize the
root finding procedure. Despite the many PFW roots found
(moving from the FW to final PFW modes), the procedure is
extremely quick numerically. The procedure aiso guarantees
that all PEW propagating modes are found. For the case shown,
14 modes in all were calculated (Fig. 1 shows only three of
these). These modes were found to satisfy the orthogonality
criteria (14) to a very high degree.

Fig. 2 shows the real and imaginary parts of the F, and H,
EM fields that result at the interfaces of the sample at y = 0
and y = —L from 0 < z < b at x = 5 when 14 modes are
used to solve (9). In Fig. 2(a) and (b), the dotted line refers to
fields evaluated at y = 01 (Region (a) just outside the sample),
and the solid line refers to fields evaluated at y = 0~ (Region
(b) just inside the sample). In Fig. 2(c) and (d), the dotted line
refers to fields evaluated at y = — L~ (just outside the sample),
and the solid line refers to fields evaluated at y = —LT. As
can be seen from Fig. 2(a)-(d), there is excellent agreement
of the F, and H, fields at the interface. The discontinuity in
the E, field at z =d, y = 0~ and y = —L™T (see Figs. 1 and
2 insets) (inside the sample) occurs because of the material
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Fig. 2. Plots of the E, and H, interface EM fields at y = 0 and
—L is shown as calculated along the line £ = a/2. In these figures,

y= ~
€ = 4.957 — 3277, p = 1236, @ = 7.112 mm, b = 3.556 mm.
d = .722 mm, and . = 5 mm.

discontinuity at z = d and the fact that the E, field is normal
to the discontinuity at this point. The E, field at y = 0% and
y = —L~ (outside the sample) is continuous as z = d as it
should, since there is no material discontinuity at this point.
Its interesting how the modal cosine series of the F, field in
Regions (a) and (¢c) at z = d and y = 0t and y = —L~
(just outside the sample), respectively, build up to satisfy the
discontinuous boundary conditions at z = d and y = 0~ and
y = —L* (just inside the sample region). The H, field at y =
0 and y = —L is continuous at 2 = d both inside and outside
the sample; thus, its boundary condition is met extremely well.
The solid and dotted lines can barely be distinguished from
one another.

In this paper, experimental S-parameter measurements
(34 GHz < f < 36 GHz) of a RAM sample which partially
fills a waveguide have been made using a Hewlett Packhard
8510 VNA with error correction applied. The RAM sample
tested was an artificial dielectric which consisted of a rubbery,
dark dielectric matrix material. The exact material makeup
of the RAM sample were unknown to the authors because
of proprietary reasons. The RAM sample was in the form
of a large flat sheet. The RAM sample was approximately
2.8 mm thick over most of its area except for one small
region which was approximately 1.09 mm. Experimental S-
parameter measurements were made of the RAM sheet for
the two thicknesses of d = 1.09 mm and d = 2.8 mm. The
measurements were made in a rectangular waveguide (WR28)
whose dimensions were @ = 7.112 mm and b = 3.556 mm.
S-parameter measurements for the d = 1.09 mm thickness
were made on 12 strips of the 1.09 mm portion of the RAM
sheet (width 7.112 mm, length ranging from 4 mm to 16 mm),
and S-parameter measurements for the d = 2.8 mm thickness
were made on 11 strips of the 2.8 mm portion of the RAM
sheet (width 7.112 mm, length ranging from 2-14 mm). All
strips were cut from separate parts of the RAM sheet.
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Fig. 3. A comparison of the normalized power absorbed Pay =
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Fig. 4. A comparison of the normalized power absorbed Papn =
Power Absorbed/ Pl ~c 18 shown when calculated by the numerical model
and when measured d = 1.0922 mm.

Figs. 3 and 4 show the results of the measurements. Because
the sample strips of the same d were all taken from slightly dif-
ferent places in the RAM sheet (with different &, i parameters)
and the sample edges may not have been perfectly straight and
corners perfectly perpendicular, and because the strip samples
may not have had exactly the same height, the S-parameter
data collected appeared to be fairly noisy (Figs. 3 and 4). For
this reason, (32) (PAN = -PA/PINC =1- ISHIZ - !Sgllz),
which gives the normalized power absorbed in terms of the
S-parameters, was used to numetically model (that is least
squares fit ¢/, ¢, u/, u'’) the experimental data.

Fig. 3 shows a comparison with the experimental Pan
versus the modeled numerical P4y (obtained after minimizing
(36) using the numerical IMSL MATH/LIBRARY package
BCONF). In Fig. 3, the experimental data appears noisy with
perhaps a 0.1 derivation from point to point. The numerical
model appears to fit the experimental data in a reasonable way.
Two local maximums occur at approximately 6 and 12 mm in
both the experimental and numerical models, and broad local
minimums appear at 8 and 16 mm in both the experimental
and numerically modeled data. Both the experimental and
numerical curves also show an increase in absorbed power
as the sample length increases, which is physically to be
expected. Four modes were used to extract the numerical
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Fig. 5. Plots of the power minimization error are shown as a function of ¢’
€', The arrow shows the point which was taken to be the final minimization
point £ = 6.1906 — .39423,

model shown, and 14 modes were used to plot the curve
shown in Fig. 3. Virtually no difference in numerical results
occurred using either a 4- or 14-mode analysis. Fig. 4 shows
a comparison of the experimental and modeled normalized
power absorbed when d = 2.8 mm. As can be seen from
Fig. 4, a fairly good fit between the numerical model and
experimental data resulted for this d case. The higher value of
d produced more closely spaced resonances in the numerical
data than in Fig. 3. The numerical model used 4 modes to
model the experimental data of Fig. 4 and 14 modes to make
the plot shown in Fig. 4. Conservation of power according to
(19) was observed to a high degree of accuracy (~.03%) for
both Figs. 3 and 4.

Fig. 5 shows plots of the minimization error P3% (32) for
d = 1.09 mm and d = 2.8 mm when the previously described
experimental data were modeled numerically. As can be see
from the plots, the d = 2.8 mm plots show two minima,
whereas the d = 1.09 mm data show only a single minima.
Only the minima marked by the arrow on the figures coincided
for both the d = 1.09 mm and d = 2.8 mm data. This value
(e =6.1—-74.39, p=1.) for f =35 GHz was taken to be the
correct modeled experimental value.

Fig. 6 shows a plot ¢ = &' — je” versus frequency as
obtained from modeling the experimental data previously
discussed. The plots show that the lossy dielectric constant
¢” is nearly constant with frequency whereas the real part, &',
drops slowly in value from about 6.7 to 5.9 over the frequency
range plotted.
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Fig. 7. A plot of normal incidence reflectivity verses RAM layer thickness
is shown at f = 35. GHz for a RAM layer whose permittivity was modeled
from the data in Figs. 3-6.

The RAM sheet which was experimentally modeled
(Figs. 3-6) was placed in contact with a metal plate (21.75 x
21.75 cm) and the normal incidence radar reflectivity of the
system was measured experimentally [20]. The RAM sheet
was approximately 2.8 mm thick over most of its area except
for a small 4 x 4 cm patch located near the edge of the sheet,
which was about 1.1 mm thick. The measured experimental
reflectivity of the system was about — 4.8 dB. Using the
PFW experimentally modeled relative complex permittivity
and permeabilty values of ¢ = 6.1906 — 7.39423 and 1 = 1 at
35 GHz (Figs. 3-6), the normal incidence radar reflectivity of
a RAM-covered infinite flat metal plate (thickness d) (Fig. 7
inset) was calculated using a lossy transmission line analysis.
The normal incidence radar reflectivity of a RAM-covered
finite size plate flat metal plate (same size as the expermental
plate) was also calculated (¢ = 6.1906 — 5.39423 and p =
1 at 35 GHz) using a recently developed diffraction code
x-patch [21]. Fig. 7 shows a comparison of the numerical
and experimental resuits. As can be seen from Fig. 7, the
transmission line reflectivity shows a reflectivity minimum of
about — 7 dB at a layer thickness of d = 2.6 mm. Considering
the fact that the experimental RAM sheet was not uniform, the
agreement between theory and experiment is quite good. An
interesting feature of the plot Fig. 7 is the fact that fairly tight
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Fig. 8. The normalized power absorbed P4n = Power Absorbed/Pry¢c is shown as a function of sample height and sample length.

tolerances on the RAM layer thickness 2.4 mm < d < 2.8 mm
must be maintained in order that the RAM sheet act effectively
as radar absorbing sheet at f = 35 GHz.

Fig. 8 shows a 3-D plot of the normalized power absorbed
versus the layer height d (0 < d < b) and L(0 < 30 mm) for
f = 35. GHz. The values of £ and p used to model data in
Fig. 8 are listed in the Fig. 8 inset. The results of Fig. 8 show
that for low values d (d < 0.75 mm), that power is absorbed
smoothly and slowly into the material with increasing length
f), where for values of b > d>0.75 mm, the power absorbed
becomes oscillatory and very dependent on the length, L,
of the sample. Numerical comparison of the power absorbed
when d almost equaled b (Fig. 8), and the case when d = b
were made (when d = b, this is the filled waveguide case
and only a TE1y mode propagates in the dielectric sample)
and it was found that almost identical power absorbed curves
were obtained for the two cases. Overall, Fig. 8 illustrates the
type of signature or pattern that can be obtained by varying d
and L simultaneously to compare numerical and experimental
data.

The dashed curves of Fig. 9(a) show the inversion of (37a)
and (37b) when values of g, = ¢ = ¢, = 5.65 — 7.5
and pgg = p = p, = 1.53 — 4.5 (this is considered the
exact inversion case since e, = € = ¢,) are used to invert
(37a) and (37b), and the solid curve shows the result of
the inversion when €., = 5.5 — 4.5, ¢ = 5.65 — 4.5, and
tag = = 1.53 —34.5 are used to invert (37a) and (37b). (This
is considered the approximate inversion case since € # &,.)
In the inversion for this case, the terms Ign, Ign, Pan, and
W™ in (37a) and (37b) were evaluated at g, = 5.5 — 4.5
and pqg = p = 1.53 — 4.5, whereas the term Wir*" was
evaluated at £, = £ = 5.65 — 5.5 and pgq = pp = 1.53 — 5.5.
In the case when the exact values were used to calculate the
integrals in (37a) and (37b), an almost exact replication of

£, p occurred, as can be seen from the flat dashed curves of
Fig. 9(a). In the case when only approximate values of &, u
were used in the integrals in (37a) and (37b), an oscillatory
deviation from the true values occurred, as is seen from the
solid curves of Fig. 9(a). Despite the approximate integral
values used for Ign, Ign, Pan, and Wiy, a useful estimate
of the e, 1, is obtained. Fig. 9(a) and (c) shows plots of the
integrals of Igy, Ign, Pan, and Wy, which resulted when
exact and approximate values of e,5 and po, are used. As
can be seen from these figures, the integrals that occur using
approximate or exact values are close to each other in value.
In Fig. 9(a) ﬂl = dy = .13 mm, and l~}1 = 5, mm and
7.5 mm < Lo < 17.5 mm. Fourteen modes were used to
generate all plots in Fig. 9(b) and (c).

The accuracy of the MOM solution of Section II for the
parameter case of Fig. 9 fore = 5.65— 3.5 and y = 1.53~ 7.5
using 14 modes was checked using the P, formula given by
(19) over the sample length range 0.5 mm < L < 22.5 mm.
It was found that when only E,. and H, field component
matching was used (pne = 0, pn. = 0), that the maximum
power error that resulted was P, = .0355%, which occurred
at I = 3 mm, and the minimum power error that resulted was
Peye = .0154%, which occurred at I, = 18.5 mm. When the
B, F, and H, fields were matched using the Galerkin values
of (Pna = Qnas Prnec = ne)s it was found that the maximum
power error that resulted was P,,, = 19.64%, which occurred
at [ = 2 mm, and the minimum power error that occurred
was Po: = 2.09%, which occurred at L = 21.5 mm. At
L =5 mm, the Galerkin power error was P, = 10.88%
and at L = 10 mm it was Py, = 5.53%. Because much lower
power error matching results were provided by E, and H,
field matching than by Galerkin matching, only E, and H,
field matching was used in this paper. The power error results
just given were typical of all cases considered by the authors.
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Fig. 9. The parameter inversion, based on (35)~(39), is shown.

The variational solution of Section Il was checked numer-
ically for the case when ¢ = 5.65 — .5, p = 1.53 — 4.5, and
L = 5. mm the other parameters were those given in Fig. 9.
It was found that the variational solution for this case agreed
with the MOM (using E, and H, field component matching
(Pra = 0, pne = 0)) solution to a high degree of accuracy.

The exact inversion case analysis of ¢ and p displayed by
the dashed curve of Fig. 9(a) serves as an extremely good
independent cross-check of the MOM solution and the varia-
tional solution presented in Sections II and III, respectively. It
is an extremely good cross-check because the MOM solution
and variational solutions of Sections II and IIT depend only
on the enforcement of the E, and H, elctromagnetic field
boundary conditions at ¥y = 0 and y = —L, whereas a cross-
check of the Complex Poynting Theorem requires that all the
nonzero EM field compnonents be integrated over the volume
V = Va1 + Vexe (Fig. 9 inset) as prescribed by the energy
and power integrals of (35)—(39). The high degree to which
e and u are correctly inverted in the exact inversion case of
the dashed curved of Fig. 9(a) (¢ and y in the dashed curve of
Fig. 9(a) deviates approximately only 1 part in 10~ from the
assumed exact values given) demonstrates the high degree of
numerical accuracy to which the Complex Poynting Theorem
is being obeyed and thus the accuracy to which the EM fields
of the overall system are being computed.

VI. SUMMARY AND FUTURE WORK

In conclusion, a novel method for determining the complex
permittivity and permeability of a material at K, band based
on TEy, scattering, which occurs from a finite length sample
that partiaily fills a rectangular waveguide, has been presented.
The work presented here can also be directly applied to sample
analysis at W band. A MOM and a variational solution were

developed to determine the EM fields and S-parameters in
the waveguide system. The numerical solutions were shown
to satisfy to a high degree of accuracy the EM field matching
conditions at the sample interfaces, to satisfy the conservation
of complex power at the aperture interfaces and satisfy the
Complex Poynting Theorem throughout the waveguide system.
An experimental analysis of a RAM sample was performed,
and its material permittivity and permeability properties were
determined by the partially filled waveguide method proposed
herein. Normal incidence plane wave experimental reflectivity
measurements were made of the RAM material (when it
covered a metal plate) and good agreement was found between
theoretically predicted reflectivity as calculated using the PFW
method proposed in the paper and the experimental results.

The are several ways that the present research work can
be extended to analyze more general waveguide cases. First,
if the material sample that partially fills the waveguide is
longitudinally inhomogeneous (¢ = e(y), u = p(y) in the
coordinate system of Fig. 1 inset), a MOM and variational
solution for this case may be developed by 1) dividing the
inhomogeneous sample into thin longitudinal slabs (each slab
is assumed to have uniform ¢ and y parameters); 2) matching
EM boundary conditions from interface to interface; and 3)
solving the resulting matrix equations for the forward and
backward propagating modes in each section and for the
overall EM fields in the whole system.

A second more general waveguide case that can be analyzed
is if the material sample that partially fills the waveguide
is vertically inhomogeneous (¢ = £(z), p = p(z) in the
coordinate system of Fig. 1 inset). This case may be analyzed
by determining the PFW modes of the system by the method
proposed by [15] and [16], and then carrying out field matching
at the sample interfaces (y = 0 and y = —L), as has already
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been performed in this paper to find a MOM and variational
solution to the overall problem. The authors feel that, if the
sample had an unknown vertical inhomogeneous profile, the
proposed solution would be an ideal one for which an inverse
scattering analysis of the unknown profile could be carried
out. The magnitude and phase of $1; and S2; would probably
be very sensitive to the vertical inhomogeneous profile, and
thus -observation of $11 and S»; would allow determination
of the profile. An analysis of the type just mentioned could
be important to the design of radar absorbing materials since
fabrication process in general may lead to nonuniform RAM
sheets.

A third generalization of the research would be to place
metal caps (aluminum foil, for example) over the endfaces
of the material sample that partially fills the waveguide. This
would cause the material sample and endcaps to behave as a
partially filled Fabry-Perot resonator. The analysis would be
carried out in the same way as already presented in Sections I1
and III except that the analysis would require that the tangental
electric fields at the metal caps be zero. The metal caps placed
over the sample endfaces would make the waveguide system
much more resonant and possibly increase the sensitivity of
the measurement system to the sample material parameters &
and u.

A fourth generalization of the work would be to analyze
the PFW when the material transversely partially fills the
waveguide (in the z direction of Fig. 1 inset) rather that the
vettical z direction, as has been analyzed here. This case
would require a TE, (Transverse Electric) vector potential
analysis [1] using the theory of Sections II and III rather
than a TM,, analysis, as has already been presented. Parameter
determination based on a TE, and a TM, analysis would
provide a great deal of data from which to ascertain the e
and p parameters of the system.

A fifth area of research would be to partially fill the
waveguide with chiral material [22]-{24] (these materials are
useful as radar absorbers) and from scattering parameters to
determine the chiral parameters of the material.
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